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Preface

Human-Computer Interaction (HCI) lies at the crossroads of many scientific
areas including artificial intelligence, computer vision, face recognition, motion
tracking, etc. In order for HCI systems to interact seamlessly with people, they
need to understand their environment through vision and auditory input. More-
over, HCI systems should learn how to adaptively respond depending on the
situation.

The goal of this workshop was to bring together researchers from the field
of computer vision whose work is related to human-computer interaction. The
selected articles for this workshop address a wide range of theoretical and ap-
plication issues in human-computer interaction ranging from human-robot in-
teraction, gesture recognition, and body tracking, to facial features analysis and
human-computer interaction systems.

This year 74 papers from 18 countries were submitted and 22 were accepted
for presentation at the workshop after being reviewed by at least 3 members of
the Program Committee. We had therefore a very competitive acceptance rate
of less than 30% and as a consequence we had a very-high-quality workshop.

We would like to thank all members of the Program Committee for their help
in ensuring the quality of the papers accepted for publication. We are grateful
to Dr. Jian Wang for giving the keynote address.

In addition, we wish to thank the organizers of the 10th IEEE International
Conference on Computer Vision and our sponsors, University of Amsterdam,
Leiden Institute of Advanced Computer Science, and the University of Illinois
at Urbana-Champaign, for support in setting up our workshop.

August 20, 2005 Nicu Sebe
Michael S. Lew

Thomas S. Huang
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Multimodal Human Computer Interaction: A Survey 

Alejandro Jaimes1 and Nicu Sebe2 

1 FXPAL, Fuji Xerox Co., Ltd., Japan 
alex.jaimes@fujixerox.co.jp 

2 University of Amsterdam, The Netherlands 
nicu@science.uva.nl 

Abstract. In this paper we review the major approaches to multimodal human 
computer interaction from a computer vision perspective. In particular, we fo-
cus on body, gesture, gaze, and affective interaction (facial expression recogni-
tion, and emotion in audio). We discuss user and task modeling, and multimo-
dal fusion, highlighting challenges, open issues, and emerging applications for 
Multimodal Human Computer Interaction (MMHCI) research. 

1   Introduction 

Multimodal Human computer interaction (MMHCI) lies at the crossroads of several 
research areas including computer vision, psychology, artificial intelligence, and 
many others. As computers become integrated into everyday objects (ubiquitous and 
pervasive computing), effective natural human-computer interaction becomes critical: 
in many applications, users need to be able to interact naturally with computers the 
way face-to-face human-human interaction takes place. We communicate through 
speech and use body language (posture, gaze [48], hand motions) to express emotion, 
mood, attitude, and attention [41]. 

In human-human communication, interpreting the mix of audio-visual signals is 
essential in understanding communication. Researchers in many fields recognize this, 
and thanks to advances in the development of unimodal techniques (in speech and 
audio processing, computer vision, etc.), and in hardware technologies (inexpensive 
cameras and sensors), there has been a significant growth in MMHCI research. Unlike 
in traditional HCI applications (a single user facing a computer and interacting with it 
via a mouse or a keyboard), in new applications (e.g., intelligent homes [43], remote 
collaboration, arts, etc.), interactions are not always explicit commands, and often 
involve multiple users. 

Although much progress has been achieved in MMHCI, most researchers still treat 
each modality (e.g., vision, speech) separately, and integrate the results at the applica-
tion stage. One reason for this is that the roles of multiple modalities and their inter-
play remain to be quantified and scientifically understood. Additionally, many open 
issues remain in processing each modality individually.  

In this paper we highlight the main vision problems that in our view should be 
solved for successful MMHCI applications, and give an overview of the research 
areas we consider essential for MMHCI. We group vision techniques according to the 
human body (Figure 1). Large-scale body movement, gesture (e.g., hands), and gaze 
analysis are used for tasks such as emotion recognition in affective interaction, and 
for a variety of applications. We discuss affective computer interaction, issues in 
multi-modal fusion, modeling, and data collection, and a variety of emerging MMHCI 
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applications. Since MMHCI is a very dynamic and broad research area we do not 
intend to present a complete survey. The main contribution of this paper, therefore, is 
to consolidate some of the main issues and approaches, and to highlight some of the 
techniques and applications developed recently within the context of MMHCI.  

1.1   Related Surveys 

Extensive surveys have been previously published in several areas such as face detec-
tion [88][26], face recognition [91], facial expression analysis [17][54], vocal emotion 
[46][95], gesture recognition [38][78][57], human motion analysis [27][83][84][22] 
[1][44], and eye tracking [12]. A review of vision-based HCI is presented in [62] with 
a focus on head tracking, face and facial expression recognition, eye tracking, and 
gesture recognition. Adaptive and intelligent HCI is discussed in [14] with a review of 
computer vision for human motion analysis, and a discussion of techniques for lower 
arm movement detection, face processing, and gaze analysis. Multimodal interfaces 
are discussed in [49][50][51][52][69]. Real-time vision for HCI (gestures, object 
tracking, hand posture, gaze) is discussed in [33]. Here, we discuss work not included 
in previous surveys, expand the discussion to areas not covered previously (e.g., in 
[33][14][62][50]), and discuss new applications in emerging areas while highlighting 
the main research issues.  

2   Overview of Multimodal Interaction 
The term multimodal has been used in many contexts and across several disciplines. 
For our interests, a multimodal HCI system is simply one that responds to inputs in 
more than one modality or communication channel (e.g., speech, gesture, writing, and 
others). We use a human-centered approach in our definition: by modality we mean 
mode of communication according to human senses or type of computer input de-
vices. In terms of human senses the categories are sight, touch, hearing, smell, and 
taste. In terms of computer input devices we have modalities that are equivalent to 
human senses: cameras (sight), haptic sensors (touch), microphones (hearing), olfac-
tory (smell), and even taste [36]. In addition, however, there are input devices that do 
not map directly to human senses: keyboard, mouse, writing tablet, motion input (e.g., 
the device itself is moved for interaction), and many others.  

In our definition, a system that uses any combination of modalities in the catego-
ries above is multimodal. For our purposes, however, interest is exclusively on sys-
tems that include vision (cameras) as a modality1. A system that responds only to 
facial expressions and hand gestures, for example, is not multimodal, even if integra-
tion of both inputs (simultaneous or not) is used (using the same argument, a system 
with multiple keys is not multimodal, but a system with mouse a keyboard input is). 
The issue of where integration of modalities takes place, if at all, is of great impor-
tance and is discussed throughout the paper.  

As depicted in Figure 1, we place input modalities in two major groups: based on 
human senses (vision, audio, haptic, olfactory and touch), and others (mouse, key-

                                                           
1  Others have studied multimodal interaction using multiple devices such as mouse and key-

board, keyboard and pen, and so on 
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board, etc.). The visual modality includes any form of interaction that can be inter-
preted visually, and the audio modality any form that is audible (including multi-
language input). We only discuss vision in detail, but as many new applications show 
(see Section 6), other modalities have gained importance for interaction (e.g., hap-
tic [4]).  

As depicted in Figure 1, multimodal techniques can be used to construct a variety 
of interfaces. Of particular interest for our goals are perceptual and attentive inter-
faces. Perceptual interfaces [80] as defined in [81], are highly interactive, multimodal 
interfaces that enable rich, natural, and efficient interaction with computers. Percep-
tual interfaces seek to leverage sensing (input) and rendering (output) technologies in 
order to provide interactions not feasible with standard interfaces and common I/O 
devices such as the keyboard, the mouse and the monitor [81]. Attentive interfaces, on 
the other hand, are context-aware interfaces that rely on a person’s attention as the 
primary input [71] — the goal of these interfaces [47] is to use gathered information 
to estimate the best time and approach for communicating with the user.  

 

Fig. 1. Overview of multimodal interaction using a human-centered approach 

Vision plays a fundamental role in several types of interfaces. As argued in [71], 
attention is epitomized by eye contact (even though other measures, such as cursor 
movement can also be indicative). Perceptual interfaces aim at natural interaction, 
making vision an essential component. The key point is that vision plays a major role 
in human-computer interfaces that aim at natural interaction. As we will see in Sec-
tion 6, vision in multimodal interaction is applied in a variety of applications and 
interface types. 

Although there have been many advances in MMHCI, as our discussions will 
show, the majority of research approaches focus on one mode independently and fuse 
the results at the highest level possible (in the application). Accordingly, in the next 
section we survey Computer Vision techniques for MMHCI and in the following 
sections we discuss fusion, interaction, and applications.  

3   Core Vision Techniques 

We classify vision techniques for MMHCI using a human-centered approach and 
divide them according to how humans may interact with the system: (1) large-scale 
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body movements, (2) gestures, and (3) gaze. We make a distinction between com-
mand (actions can be used to explicitly execute commands: select menus, etc.) and 
non-command interfaces (actions or events used to indirectly tune the system to the 
user’s needs) [45][7].  

In general, vision-based human motion analysis systems used for MMHCI can be 
thought of as having mainly 4 stages: (1) motion segmentation, (2) object classifica-
tion, (3) tracking, and (4) interpretation. While some approaches use geometric primi-
tives to model different components (e.g., cylinders for limbs, head, and torso for 
body movements, or for hand and fingers in gesture recognition), others use feature 
representations based on appearance. In the first approach, external markers are often 
used to estimate body posture and relevant parameters. While markers can be accu-
rate, they place restrictions on clothing and require calibration, so they are not desir-
able in many applications. Appearance based methods, on the other hand, do not re-
quire markers, but require training (e.g., with machine learning, probabilistic 
approaches, etc.). Methods that do not require markers place fewer constraints on the 
user and are more desirable, as are those that do not use geometric primitives (which 
are computationally expensive and often not suitable for real-time processing).  

Next, we discuss some specific techniques for body, gesture, and gaze. The motion 
analysis steps are similar, so there is some inevitable overlap in the discussions. Some 
of the issues for gesture recognition, for instance, apply to body movements and gaze 
detection. 

3.1   Large-Scale Body Movements 

Tracking of large-scale body movements (head, arms, torso, and legs) is necessary to 
interpret pose and motion in many MMHCI applications Since extensive surveys have 
been published [83][84][22][1][44], we discuss the topic briefly.  

The authors of [87] identify three important issues in articulated motion analysis: 
representation (joint angles or motion of all the sub-parts), computational paradigms 
(deterministic or probabilistic), and computation reduction. They propose a dynamic 
Markov network that uses Mean Field Monte Carlo algorithms so that a set of low 
dimensional particle filters interact with each other to solve a high dimensional prob-
lem collaboratively. 

Body posture analysis is important in many MMHCI applications. In [77], the au-
thors use a stereo and thermal infrared video system to estimate driver posture for 
deployment of smart air bags. The authors of [64] propose a method for recovering 
articulated body pose without initialization and tracking (using learning). The authors 
of [3] use pose and velocity vectors to recognize body parts and detect different ac-
tivities, while the authors of [5] use temporal templates. 

In some emerging MMHCI applications, group and non-command actions play an 
important role. The authors of [40] present an approach to segment a meeting accord-
ing to actions such as monologue, presentation, white-board, discussion, and note 
taking. HMMs are used with a combination of audiovisual features. Visual features 
are extracted from head and hand/forearm blobs: the head blob is represented by the 
vertical position of its centroid, and hand blobs are represented by eccentricity and 
angle with respect to the horizontal. Audio features include energy, pitch, and speak-
ing rate, among others. The authors of [24] use only computer vision, but make a 
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distinction between body movements, events, and behaviors, within a rule-based sys-
tem framework. 

Important issues for large-scale body tracking include whether the approach uses 
2D or 3D, desired accuracy, speed, occlusion and other constraints. Some of the is-
sues pertaining to gesture recognition, discussed next, can also apply to body tracking.  

3.2   Gesture Recognition 

Psycholinguistic studies for human-to-human communication [41] describe gestures 
as the critical link between our conceptualizing capacities and our linguistic abilities. 
Humans use a very wide variety of gestures ranging from simple actions of using the 
hand to point at objects to the more complex actions that express feelings and allow 
communication with others. Gestures should therefore play an essential role in 
MMHCI [32][86][19]. A major motivation for these research efforts is the potential of 
using hand gestures in various applications aiming at natural interaction between the 
human and the computer-controlled interface. These applications range from virtual 
environments [31], to smart surveillance [78] and remote collaboration [19]. 

There are several important issues that should be considered when designing a ges-
ture recognition system [57]. The first phase of a recognition task is choosing a 
mathematical model that may consider both the spatial and the temporal characteris-
tics of the hand and hand gestures. The approach used for modeling plays a crucial 
role in the nature and performance of gesture interpretation. Once the model is de-
tected, an analysis stage is required for computing the model parameters from the 
features that are extracted from single or multiple input streams. These parameters 
represent some description of the hand pose or trajectory and depend on the modeling 
approach used. Among the important problems involved in the analysis are that of 
hand localization [94], hand tracking [89], and the selection of suitable features [32]. 
After the parameters are computed, the gestures represented by them need to be clas-
sified and interpreted based on the accepted model and based on some grammar rules 
that reflect the internal syntax of gestural commands. The grammar may also encode 
the interaction of gestures with other communication modes such as speech, gaze, or 
facial expressions. As an alternative, some authors have explored using combinations 
of simple 2D motion based detectors for gesture recognition [29]. 

In any case, to fully exploit the potential of gestures for an MMHCI application, 
the class of possible recognized gestures should be as broad as possible and ideally 
any gesture preformed by the user should be unambiguously interpretable by the in-
terface. However, most of the gesture-based HCI systems allow only symbolic com-
mands based on hand posture or 3D pointing. This is due to the complexity associated 
with gesture analysis and the desire to build real-time interfaces. Also, most of the 
systems accommodate only single-hand gestures. Yet, human gestures, especially 
communicative, naturally employ actions of both hands. However, if the two-hand 
gestures are to be allowed, several ambiguous situations may appear (e.g., occlusion 
of hands, intentional vs. unintentional, etc.) and the processing time will likely in-
crease. Another important aspect that is increasingly considered is the use of other 
modalities (e.g., speech) to augment the MMHCI system [51][72]. The use of such 
multimodal approaches can reduce the complexity and increase the naturalness of the 
interface for MMHCI [50].  
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3.3   Gaze Detection 

Gaze, defined as the direction to which the eyes are pointing in space, is a strong 
indicator of attention, and it has been studied extensively since as early as 1879 in 
psychology, and more recently in neuroscience and in computing applications [12]. 
While early eye tracking research focused only on systems for in-lab experiments, 
many commercial and experimental systems are available today for a wide range of 
applications. 

Eye tracking systems can be grouped into wearable or non-wearable, and infrared-
based or appearance-based. In infrared-based systems, a light shining on the subject 
whose gaze is to be tracked creates a “red-eye effect:” the difference in reflection 
between the cornea and the pupil is used to determine the direction of sight. In ap-
pearance-based systems, computer vision techniques are used to find the eyes in the 
image and then determine their orientation. While wearable systems are the most 
accurate (approximate error rates under 1.4° vs. errors under 1.7° for non-wearable 
infrared), they are also the most intrusive. Infrared systems are more accurate than 
appearance-based, but there are concerns over the safety of prolonged exposure to 
infrared lights. In addition, most non-wearable systems require (often cumbersome) 
calibration for each individual.  

Appearance-based systems use both eyes to predict gaze direction, so the resolu-
tion of the image of each eye is often small, which makes them less accurate. In [82], 
the authors propose using a single high-resolution image of one eye to improve accu-
racy. Infrared-based systems usually use only one camera. The authors of [66] have 
proposed using multiple cameras to improve accuracy. 

One trend has been to improve non-wearable systems for use in MMHCI and other 
applications where the user is stationary (e.g., [74][66]). For example, the authors of 
[74] monitor driver visual attention using a single, non-wearable camera placed on a 
car’s dashboard to track face features and for gaze detection.  

There have also been advances in wearable eye trackers for novel applications. In 
[90], eye tracking data is combined with video from the user’s perspective, head di-
rections, and hand motions to learn words from natural interactions with users; the 
authors of [58] use a wearable eye tracker to understand hand-eye coordination in 
natural tasks, and the authors of [13] use a wearable eye tracker to detect eye contact 
and record video for blogging. 

The main issues in developing gaze tracking systems are intrusiveness, speed, ro-
bustness, and accuracy. The type of hardware and algorithms necessary, however, 
depend highly on the level of analysis desired. Gaze analysis can be performed at 
three different levels [7]: (a) highly detailed low-level micro-events, (b) low-level 
intentional events, and (c) coarse-level goal-based events. Micro-events include mi-
cro-saccades, jitter, nystagmus, and brief fixations, which are studied for their physio-
logical and psychological relevance by vision scientists and psychologists. Low-level 
intentional events are the smallest coherent units of movement that the user is aware 
of during visual activity, which include sustained fixations and revisits. Although 
most of the work on HCI has focused on coarse-level goal-based events (e.g., using 
gaze as a pointer [73]), it is easy to foresee the importance of analysis at lower levels, 
particularly to infer the user’s cognitive state in affective interfaces (e.g., [25]). 
Within this context, an important issue often overlooked is how to interpret eye-
tracking data (see [67] for discussion on eye tracking data clustering). 
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4   Affective Human-Computer Interaction 

There is a vast body of literature on affective computing and emotion recognition 
[2][55][61]. Affective states are intricately linked to other functions such as attention, 
perception, memory, decision-making, and learning [15]. This suggests that it may be 
beneficial for computers to recognize the user's emotions and other related cognitive 
states and expressions.  

Researchers use mainly two different methods to analyze emotions. One approach 
is to classify emotions into discrete categories such as joy, fear, love, surprise, sad-
ness, etc., using different modalities as inputs to emotion recognition models. The 
problem is that the stimuli may contain blended emotions and the choice of these 
categories may be too restrictive, or culturally dependent. Another way is to have 
multiple dimensions or scales to describe emotions. Two common scales are valence 
and arousal. Valence describes the pleasantness of the stimuli, with positive or pleas-
ant (e.g, happiness) on one end, and negative or unpleasant (e.g., disgust) on the 
other. The other dimension is arousal or activation. For example, sadness has low 
arousal, whereas surprise has a high arousal level. The different emotional labels 
could be plotted at various positions on a two-dimensional plane spanned by these 
two axes to construct a 2D emotion model [35][23].  

Facial expressions and vocal emotions are particularly important in this context, so 
we discuss them in more detail below. 

4.1   Facial Expression Recognition 

Most facial expression recognition research (see [54] and [17] for two comprehensive 
reviews) has been inspired by the work of Ekman [15] on coding facial expressions 
based on the basic movements of facial features called action units (AUs). In this 
scheme, expressions are classified into a predetermined set of categories. Some meth-
ods follow a “feature-based” approach, where one tries to detect and track specific 
features such as the corners of the mouth, eyebrows, etc. Other methods use a “re-
gion-based” approach in which facial motions are measured in certain regions on the 
face such as the eye/eyebrow and the mouth. In addition, we can distinguish two types 
of classification schemes: dynamic and static. Static classifiers (e.g., Bayesian Net-
works) classify each frame in a video to one of the facial expression categories based 
on the results of a particular video frame. Dynamic classifiers (e.g., HMM) use sev-
eral video frames and perform classification by analyzing the temporal patterns of the 
regions analyzed or features extracted. They are very sensitive to appearance changes 
in the facial expressions of different individuals so they are more suited for person-
dependent experiments [10]. Static classifiers, on the other hand, are easier to train 
and in general need less training data but when used on a continuous video sequence 
they can be unreliable especially for frames that are not at the peak of an expression.  

4.2   Emotion in Audio 

The vocal aspect of a communicative message carries various kinds of information. If 
we disregard the manner in which a message is spoken and consider only the textual 
content, we are likely to miss the important aspects of the utterance and we might 
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even completely misunderstand the meaning of the message. Nevertheless, in contrast 
to spoken language processing, which has recently witnessed significant advances, the 
processing of emotional speech has not been widely explored. 

Starting in the 1930s, quantitative studies of vocal emotions have had a longer his-
tory than quantitative studies of facial expressions. Traditional as well as most recent 
studies on emotional contents in speech (see [46], [95], and [68]) use “prosodic” in-
formation which includes the pitch, duration, and intensity of the utterance. Recent 
studies seem to use the “Ekman six” basic emotions, although others in the past have 
used many more categories. The reasons for using these basic categories are often not 
justified since it is not clear whether there exist “universal” emotional characteristics 
in the voice for these six categories [11]. 

The most surprising issue regarding the multimodal affect recognition problem is 
that although recent advances in video and audio processing could make the multimo-
dal analysis of human affective state tractable, there are only a few research efforts 
[30][70][92] that have tried to implement a multimodal affective analyzer.  

5   Modeling, Fusion, and Data Collection 

5.1   User, Context, and Task Modeling 

Multimodal interface design [63] is important because the principles and techniques 
used in traditional GUI-based interaction do not necessarily apply in MMHCI sys-
tems. Issues to consider, as identified in [63] include design of inputs and outputs, 
adaptability, consistency, and error handling, among others. In addition, one must 
consider dependency of a person's behavior on his/her personality, cultural, and social 
vicinity, current mood, and the context in which the observed behavioral cues are 
encountered.  

Many design decisions dictate the underlying techniques used in the interface. For 
example, adaptability can be addressed using machine learning: rather than using a 
priori rules to interpret human behavior, we can potentially learn application-, user-, 
and context-dependent rules by watching the user's behavior in the sensed context 
[59]. Probabilistic graphical models have an important advantage here: well known 
algorithms exist to adapt the models, and it is possible to use prior knowledge when 
learning new models. For example, a prior model of emotional expression recognition 
trained based on a certain user can be used as a starting point for learning a model for 
another user, or for the same user in a different context. Although context sensing and 
the time needed to learn appropriate rules are significant problems in their own right, 
many benefits could come from such adaptive MMHCI systems.  

5.2   Fusion 

A typical issue of multimodal data processing is that multisensory data is typically 
processed separately and only combined at the end. Yet, people convey multimodal 
(e.g., audio and visual) communicative signals in a complementary and redundant 
manner (as shown experimentally by Chen [11]). Therefore, in order to accomplish a 
human-like multimodal analysis of multiple input signals acquired by different sen-
sors, the signals cannot be considered mutually independently and cannot be com-
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bined in a context-free manner at the end of the intended analysis but, on the contrary, 
the input data should be processed in a joint feature space and according to a context-
dependent model. In practice, however, besides the problems of context sensing and 
developing context-dependent models for combining multisensory information, one 
should cope with the size of the required joint feature space. Problems include large 
dimensionality, differing feature formats, and time-alignment. A potential way to 
achieve multisensory data fusion is to develop context-dependent versions of a suit-
able method such as the Bayesian inference method proposed by Pan et al. [53]. 

In spite of its importance, the problem of fusing multiple modalities is often largely 
ignored. For example, the studies in facial expression recognition and vocal affect 
recognition have been done largely independent of each other. Most works in facial 
expression recognition use still photographs or video sequences without speech. Simi-
larly, works on vocal emotion detection often use only audio information. A legiti-
mate question that should be considered in MMHCI, is how much information does 
the face, as compared to speech, and body movement, contribute to natural interac-
tion. Most experimenters suggest that the face is more accurately judged, produces 
higher agreement, or correlates better with judgments based on full audiovisual input 
than on voice input [42]. 

A multimodal system should be able to deal with imperfect data and generate its 
conclusion so that the certainty associated with it varies in accordance to the input 
data. A way of achieving this is to consider the time-instance versus time-scale di-
mension of human nonverbal communicative signals [55]. By considering previously 
observed data (time scale) with respect to the current data carried by functioning ob-
servation channels (time instance), a statistical prediction and its probability might be 
derived about both the information that has been lost due to malfunctioning/inaccu-
racy of a particular sensor and the currently displayed action/reaction. Probabilistic 
graphical models, such as Hidden Markov Models (including their hierarchical vari-
ants), Bayesian networks, and Dynamic Bayesian networks are very well suited for 
fusing such different sources of information. These models can handle noisy features, 
temporal information, and missing values of features all by probabilistic inference. 
Hierarchical HMM-based systems [10] have been shown to work well for facial ex-
pression recognition. Dynamic Bayesian Networks and HMM variants [21] have been 
shown to fuse various sources of information in recognizing user intent, office activity 
recognition, and event detection in video using both audio and visual information 
[20]. This suggests that probabilistic graphical models are a promising approach to 
fusing realistic (noisy) audio and video for context-dependent detection of behavioral 
events such as affective states. 

Despite important advances, further research is still required to investigate fusion 
models able to efficiently use the complementary cues provided by multiple modali-
ties. 

5.3   Data Collection and Testing 

Collecting MMHCI data and obtaining the ground truth for it is a challenging task. 
Labeling is time-consuming, error prone, and expensive. In developing multimodal 
techniques for emotion recognition, for example, one approach consists of asking 
actors to read material aloud while simultaneously portraying particular emotions 
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chosen by the investigators. Another approach is to use emotional speech from real 
conversations or to induce emotions from speakers using various methods (e.g., show-
ing photos or videos to induce reactions). Using actor portrayals ensures control of the 
verbal material and the encoder’s intention, but raises the question about the similarity 
between posed and naturally occurring expressions. Using real emotional speech, on 
the other hand, ensures high validity, but renders the control of verbal material and 
encoder intention more difficult. Induction methods are effective in inducing moods, 
but it is harder to induce intense emotional states in controlled laboratory settings. 

In general, collection of data for an MMHCI application is challenging because 
there is wide variability in the set of possible inputs (consider the number of possible 
gestures), often only a small set of training examples is available, and the data is often 
noisy. Therefore, it is very beneficial to construct methods that use scarcely available 
labeled data and abundant unlabeled data. 

Probabilistic graphical models are ideal candidates for tasks in which labeled data 
is scarce, but abundant unlabeled data is available. Efficient and convergent probabil-
istic graphical model algorithms exist for handling missing and unlabeled data. Cohen 
et al. [9] showed that unlabeled data can be used together with labeled data for 
MMHCI applications using Bayesian networks. However, they have shown that care 
must be taken when attempting such schemes. In the purely supervised case (only 
labeled data), adding more labeled data always improves the performance of the clas-
sifier. Adding unlabeled data, however, can be detrimental to the performance. Such 
detrimental effects occur when the assumed classifier's model does not match the 
data’s distribution.  

To conclude, further research is necessary to achieve maximum utilization of unla-
beled data for MMHCI problems since it is clear that such methods could provide 
great benefit. 

6   Applications 

Throughout the paper we have discussed techniques applied in a wide variety of ap-
plication scenarios, including video conferencing and remote collaboration, intelligent 
homes, and driver monitoring.  

As many of these applications show, the model of user interface in which one per-
son sits in front of a computer is quickly changing. In some cases, the actions or 
events to be recognized are not explicit commands. In smart conference room applica-
tions, multimodal analysis has been applied mostly for video indexing [40] (see [60] 
for a social analysis application). Although such approaches are not meant to be used 
in real-time, they are useful in investigating how multiple modalities can be fused in 
interpreting communication. It is easy to foresee applications in which “smart meeting 
rooms” actually react to multimodal actions in the same way that intelligent homes 
should [43].  

Perhaps one of the most exciting application areas of MMHCI is art. Vision tech-
niques can be used to allow audience participation [39] and influence a performance. 
In [85], the authors use multiple modalities (video, audio, pressure sensors) to output 
different “emotional states” for Ada, an intelligent space that responds to multimodal 
input from its visitors. In [37], a wearable camera pointing at the wearer’s mouth 
interprets mouth gestures to generate MIDI sounds (so a musician can play other 
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instruments while generating sounds by moving his mouth). In [56], limb movements 
are tracked to generate music. MMHCI can also be used in museums to augment 
exhibitions [76].  

Robotics is yet another interesting area for MMHCI. The authors of [18] give a 
comprehensive review of socially active robots and discuss the role of “human-
oriented perception” (speech, gesture, and gaze).  

People with disabilities can benefit greatly from MMHCI technologies [34]. The 
authors of [75] propose a component-based smart wheel chair system and discuss 
other approaches that integrate various types of sensors (not only vision). In [12], 
computer vision is used to interpret facial gestures for wheel chair navigation. In [6], 
the authors present two techniques (head tilt and gesture with audio feedback) to con-
trol a mobile device. The approach could be beneficial for people with disabilities, but 
it points to another interesting area: use of MMHCI for mobile devices that have lim-
ited input/output resources. Finally, [65] introduces a system for presenting digital 
pictures non-visually (multimodal output). Other important application areas include 
gaming [92], and education, “safety-critical applications” (e.g., medicine, military, 
etc. [8]) among others. 

7   Conclusion 

We have highlighted major vision approaches for multimodal human-computer inter-
action. We discussed techniques for large-scale body movement, gesture recognition, 
and gaze detection. We discussed facial expression recognition, emotion analysis 
from audio, user and task modeling, multimodal fusion, and a variety of emerging 
applications.  

One of the major conclusions of this survey is that most researchers process each 
channel (visual, audio) independently, and multimodal fusion is still in its infancy. On 
one hand, the whole question of how much information is conveyed by “separate” 
channels may inevitably be misleading. There is no evidence that individuals in actual 
social interaction selectively attend to another person's face, body, gesture, or speech, 
or that the information conveyed by these channels is simply additive. The central 
mechanisms directing behavior cut across channels, so that, for example, certain as-
pects of face, body, and speech are more spontaneous and others are more closely 
monitored and controlled. It might well be that observers selectively attend not to a 
particular channel but to a particular type of information (e.g., cues to emotion, decep-
tion, or cognitive activity), which may be available within several channels. No inves-
tigator has yet explored this possibility or the possibility that different individuals 
may typically attend to different types of information.  

Another important issue is the affective aspect of communication that should be 
considered when designing an MMHCI system. Emotion modulates almost all modes 
of human communication—facial expression, gestures, posture, tone of voice, choice 
of words, respiration, skin temperature and clamminess, etc. Emotions can signifi-
cantly change the message: often it is not what was said that is most important, but 
how it was said. As noted by Picard [61] affect recognition is most likely to be accu-
rate when it combines multiple modalities, information about the user's context, situa-
tion, goal, and preferences. A combination of low-level features, high-level reasoning, 
and natural language processing is likely to provide the best emotion inference in the 
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context of MMHCI. Considering all these aspects, Pentland [59] believes that multi-
modal context-sensitive human-computer interaction is likely to become the single 
most widespread research topic of the artificial intelligence research community. 
Advances in this area could change not only how professionals practice computing, 
but also how mass consumers interact with technology. 
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Abstract. Although large displays could allow several users to work
together and to move freely in a room, their associated interfaces are
limited to contact devices that must generally be shared. This paper
describes a novel interface called SHIVA (Several-Humans Interface with
Vision and Audio) allowing several users to interact remotely with a
very large display using both speech and gesture. The head and both
hands of two users are tracked in real time by a stereo vision based
system. From the body parts position, the direction pointed by each
user is computed and selection gestures done with the second hand are
recognized. Pointing gesture is fused with n-best results from speech
recognition taking into account the application context. The system is
tested on a chess game with two users playing on a very large display.

1 Introduction

Although large displays could theoretically allow several users to work together
and to move freely in a room, their associated interfaces are limited to contact
devices that must generally be shared. Moreover when interacting together, users
use natural powerful ways of communication like voice and gestures, but when in-
teracting with a computer, they are still limited to poor means of interaction like
pushing buttons. This paper describes a novel interface called SHIVA (Several-
Humans Interface with Vision and Audio) designed to allow several users to
interact remotely with a very large display by using both speech and gesture.
From a stereo camera, the head and both hands of two users are detected and
tracked in real time. The first detected hand position of each user is used to esti-
mate the pointed direction and the second one is used for selection or to control
a third axis in 3D applications. Then, the pointed direction is fused with n-best
results from speech recognition to interpret the user multimodal command, also
taking into account the application context (here a chess game).

This paper is organized in the following manner. In the next section, some
previous work on multi-person tracking and on pointing gesture recognition is
discussed. Then our work novel contribution is presented. The following section
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describes the body parts detection and tracking. The next section deals with the
modalities fusion and synchronisation. Then, some results are given.

2 Previous Work

Concerning multiple person tracking, in [5], the authors present a particle filter
based multi-person tracker with audio and video state components (position,
height and whether each user is speaking). In [16], the authors track two persons
in an outdoor context to identify their interactions. Tracking is based on blobs
extraction and background substraction from monocular grayscale images. In
[4], the authors use a multi-camera system based on Bayesian modality fusion
to track multiple people in an indoor environment. The main common draw-
backs of these methods is that each person is considered as one object and
no information on their body parts positions are provided. In [15], the authors
present a method to track body parts of multiple people with limited occlusions
using a multiple hypothesis tracking with path coherence constraints. This in-
teresting method requires a high frame rate to verify the assumption of smooth
movements. Moreover, their method tracks skin-coloured blobs without knowing
which one is the head and which one is the hand and without assigning each
head and hand to a person. These methods seem to have an expensive compu-
tational cost which forbids their use in real time fusion with speech recognition
and interaction with an application.

Since Bolt’s “Put That There” [2], where a magnetic sensor was used to
retrieve the pointed direction, some recent studies in computer vision deals with
pointing gesture recognition in front of a large display. In [6], the body pose of
a user is tracked thanks to a 3D articulated model and a stereo camera. The
system works with cluttered background but need an initial calibration step (user
with extended arms). Moreover, as in [9], to select an object, a user must keep
pointing for a certain amount of time (2 sec) which slows the interaction, tires the
user and can lead to unwanted selections. In [10], the head and a hand of a user
are tracked and used to compute the pointed direction. The algorithm compute
extremal points of the body silhouettes extracted from multiple cameras. A
computer per camera is used and an off-line calibration step between cameras is
needed. Moreover, the hand and the head are not always the extremal points of
the silhouettes and other body parts like the elbow can be mistakenly labelled
as one of the tracked part. In [13], based on a stereo camera, the hands and head
of a user are detected and tracked as skin-colour blobs. As a result, the system
would probably fail with skin-coloured clothes. Moreover, the precision on the
head-hand line estimation is too low to be used continuously in a large display
interface. In [12], head and both hands of two users are tracked simultaneously
with a monocular camera for each user. The use of a monocular camera makes it
difficult to compute the 3D head-hand axis or the 3D arm axis and thus a cursor
is moved according to the 2D position of the hand only. It could be a problem
specially for small people to point the top of a very large screen. Moreover, in
2D it is harder to detect the purposiveness of the user. In [17], the intentional
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arm-pointing gestures of several users are recognized using surrounding stereo
cameras. The pointing precision is good and is robust to lighting change and
users’ clothing but interaction is limited by using only a one arm horizontal and
vertical swinging gesture interface in addition to pointing gestures.

Compared to other studies, SHIVA is able to detect and track the head and
both hands of two users as in [15] but each body part is assigned to a person.
The interface is based on our previous work for tracking the body parts of one
person described in [3]. As in [6, 9, 13], a stereo camera is used with a 320x240
image resolution. The tracker is robust to reasonable variations of luminosity,
to skin-coloured clothes and to cluttered backgrounds. Moreover, body parts
detection, tracking and losses detection are fully automatic and perform in real
time.

No calibration, specific user prior or learning is needed. As long as no oc-
clusions between body parts occur, the system keeps the same behaviour when
users move freely in the room as in [17]. The head-hand axis is used as pointing
convention as in [9, 10, 13]. Selection is done with the second hand or thanks
to speech recognition. In addition, speech recognition has a small vocabulary
adapted to the application to allow more powerful commands rather than just a
gesture mouse [3, 6, 9]. The speech recognition results are fused with gesture and
the application context to allow shorter multimodal commands and to create a
flexible interface.

3 Body Parts Detection and Tracking

3.1 Preprocessing

Detection and tracking of body parts rely on skin-colour (figure 1-2), disparity
(figure 1-3) and movement (figure 1-4) information. Skin colour is obtained by a
broad filter look-up table obtained on different users and under different lighting
conditions. Obtained from the two images of a stereo camera, the disparity gives
the 3D position of a pixel with respect to the camera coordinates. Disparity
cannot be precisely determined in homogeneous colour zones or in areas with
large depth difference. A filtered disparity image is computed for each user for
which the observations too far away (> 1.3m) from the head centre are discarded
(once the head has been detected). The movement is obtained by background
subtraction which is updated every image so that a still person quickly fades in
the background.

Fig. 1. From left to right: (1) RGB image. (2) Skin-colour image. (3) Mixed disparity
image of the two users. (4) Movement image
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3.2 Head Detection

When no user is present, the system searchs for a face. As no face recognition
techniques are used, the first detected head is labelled as user A head and second
detected head as user B head. Then when a head lost is automatically detected
(c.f. §3.5), its detection is retriggered and the remaining head is still tracked. An
accurate face detector is used to initialize the tracking: it is a modular neural
network with high detection rate and a very low false alarm rate. It has been de-
scribed in details in [8]. For human computer interfaces (HCI), failure to detect
face in an image is not crucial since the face can be detected in the following im-
ages. On the other hand, continuously tracking a false alarm is a major problem.
The face detector is accurate but slow. To speed up the process, the following
procedure is used. The image is equally divided into sixteen regions. At each
image, candidate regions for face detection are selected. These are regions with
a sufficient number of moving pixels, skin colour pixels and depth pixels within
the face detector detection range. The regions containing the other user body
parts, if known, are removed from candidate regions list. Only one of these can-
didate regions is then randomly selected at each image. The face detector is only
applied on this region giving real time performance. Each pixel of this region
is tested as possible centre for the face by the neural network. Pixels of other
regions are taken into account when testing near boundaries pixels so that the
detection works even when face is located at a boundary. A selection algorithm
ensures that a region is not selected again before all other candidate regions are
first tested. Once a face is found, the 3D tracking is initialized on the image
corresponding to the detected face.

3.3 Body Space

Once a head is detected, its 3D position is used to define several areas. These
areas help to detect hands and to detect the pointing purposiveness of the user.
Biometric constraints limit the search space during hand detection to a spheroid
centred on the face. The area outside this spheroid is discarded (figure 2-area 3).
Furthermore, it is reasonable to admit that, when interacting with the display,
the user moves its dominant hand towards the display and sufficiently away from
its face (>30 cm). Thus the hand search space is restricted to a volume delimited
by a sphere and a plane, a volume called the ‘action area’ (figure 2-area 2). Each
user has a private area (figure 2-area a and area c). If the distance between the

Fig. 2. Left: side view 1: rest area, 2: action area, 3: discarded area. Right: front view
a: user A private area, b: overlapped area, c: user B private area
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two users is too small the private areas overlap. The ‘overlapped area’ (figure
2-area b) is excluded from the hand search space to avoid assigning a hand to a
wrong user. For both users, the first detected hand will be labelled as pointing
hand and the second one as controlling hand (used for selection gesture or to
control a third axis in 3D environments). The system works both for right-handed
or left-handed users without the need for left or right hand labels. We assume
that users will first point at an object with their predominant hand before using
the other hand to interact with it. Once detected a hand is continuously tracked
in the ‘action area’ and ‘rest area’ (figure 2-area 1) and in the other user private
area. But the hand function (pointing or controlling) will be taken into account
only when the hand is in the ‘action area’ to detect the user purposiveness. These
areas are face referenced, so that their absolute positions change as users move
but the system behaviour remains the same.

3.4 Hands Detection

Contrary to faces, hands exhibit extremely variable shapes as seen from a camera
and are thus difficult to detect, specifically at low image resolution. Once the
face is detected and using disparity information, the 3D position of the face
is obtained and the body search areas are defined (c.f. §3.3). A hand is then
detected as a skin colour moving zone, in the action area, the closest one to the
display. When present, the pixels of the other hand and the corresponding arm
are subtracted from the search space as described in [3]. Indeed, a naked arm or
an arm covered by a skin colour cloth could be mistakenly selected as the second
skin colour moving zone closest to the display. In a similar way, tracked body
parts of the other user are discarded.

3.5 Tracking

Once detected body parts are first tracked for user A and then for user B. The
core of the tracking process is the statistical model, which aims at explaining the
result of the pre-processing stages. Each model represent a body part and is a
combination of a colour histogram and a 3D spatial Gaussian function. Moreover
an exponential function gives higher probability to forward observations for the
hands (to be robust to skin-coloured arms). A model with a colour histogram
only is used for the discarded class. Only skin-colour observations belonging
either to the action area or to the rest area are taken into account and the
observations belonging to the other user body parts are ignored.

The parameters of all models are adapted for each image with an EM algo-
rithm described more in details for one person in [3]. This algorithm alternates
an expectation E step with a maximization M step and converges towards the
parameters to the a posteriori (since a prior is used) maximum probability. At
each E step, the parameters are initialized with the values computed at the pre-
vious M step or, for the first iteration, with the results obtained for the previous
image. During the expectation step, the probability of belonging to a model (the
hidden variable of the EM algorithm) is computed for every observation and



Tracking Body Parts of Multiple People 21

for each of the models. During the Maximisation step, new estimations of the
parameters are computed from the expectations.

It is a necessity to automatically detect tracking losses, so that the system is
able to recover from tracking drifts or if a user steps out of the field of view of
the camera. A measure of the number of skin colour pixels and of valid disparity
pixels is performed. If this measure is below some given threshold, the model is
considered as lost and the corresponding body part detection process is triggered.
In addition, hand models are considered to be lost if the distance between the
head and the hand exceeds some value (≈ 1, 3m).

4 SHIVA Multimodal System

The aim of SHIVA interface is to enable both users to talk and point simultane-
ously. Currently, SHIVA has been implemented on a chess game (figure 5-E and
5-F) where users interact with speech and gesture one at a time.

Fig. 3. The different speech and gesture components of SHIVA

A HCI is a loop where the user should not be only consider as input but also
as an output of the system (figure 3). Visual and audio feedbacks are provided to
users. The tracking results and speech recognition are displayed and animations
allow to visualise a chess move even if it is forbidden by chess rules.

4.1 Synchronisation and Fusion Techniques

One of the first steps towards interpreting a multimodal command is synchro-
nising speech and gesture [7]. With a pen-voice interface, S. Oviatt et al. [14]
showed that for 32% of the patterns, the pen gestures were completed first and
were followed by the voice utterance with a lag of 1.4 sec. For a gesture inter-
face similar to SHIVA, S. Kettebekov and R. Sharma [11] observe that 93.7%
of the gestures were temporally aligned with the semantically associated speech
utterance during a map manipulation application. We assume that gesture and
speech are synchronous.

In [7], the authors address the problem of speech-gesture alignment by choos-
ing the appropriate gesture to link each verbal utterance. But in our system, the
pointing gesture modality is a permanent process, while the hand stays suffi-
ciently in front of the head, and all pointed locations during interaction are
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known. Selection gesture is a discrete event whereas oral selection utterance
is an event, whose beginning and end are known (figure 4): to detect end of
speech, some consecutive silent frames must be observed. So the n-best results
of speech recognition are delivered 240 ms after the end of speech signal. To syn-
chronize pointing and selection, we consider the pointing location at the instant
corresponding to the selection gesture event [1] and the mean pointing location
corresponding to the speech signal time interval (figure 5-Left frame). Direct fu-
sion between modalities occurs by associating the best speech recognition result
coherent with the object found at the pointed location.

frames decoding

Beginning of detection

delivery of recognition result
delivery of n−best solutions

Trailing silence : 240ms

delivery of beginning of detection time−stamp
timeDetection decision

signal processed by the decoder

delivery of end of detection time−stamp

Beginning of speech End of speech Detection ends

Fig. 4. Different times related to speech recognition. Speech recognition result is only
available after a trailling silence delay following speech signal

4.2 Application Context Awareness

A chess game [18] has been modified to accept input commands generated by
the multimodal interpreter and to provide contextual constraint information
outputs (figure 3). The chess application context includes displacement rules,
current position of the pieces, displacement history and player turn. From this
context, a list of legal or illegal, of ambiguous or explicit moves is obtained. The
aim is to match one of these moves with a multimodal command.

Two specified squares suffice to move a piece: the square where the piece
to move is and the destination square. Pointing at a square, a user specifies
one of these two required squares. The information about the second one can be
specified by speech. To make shorter utterance, the user will lean on information
already available in the context and specify only the missing information. So to
find the second square, SHIVA must retrieve information from speech and from
the application context. The current context is linked to the pointed square:

– When a user points at one of his or her piece, the current context is the
opposing pieces that can be taken by the pointed piece (figure 5-D).

– When a user points at one of the opposing piece or at an empty square, the
current context is the user pieces that can take the pointed opposing piece
or move to the empty square.

When a user utters the name of a piece which is unique in the current context
the second square is known and the move activated. If several pieces of the
current context have the same uttered name (pawns in figure 5-D), the move is
ambiguous and a feedback is sent. If the uttered piece does not belong to the
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Fig. 5. Left frame: Three alternative ways to move a chess piece. (A) Pointing gestures
(curve) to destination and drag/drop Oral commands (group of 3 vertical lines indicates
begin, end of speech signal and speech recognition time stamps). (B) Pointing gestures
(curve) and select/unselect gestures (vertical lines indicate gesture time event). (C)
Multimodal pointing gestures (curve) and one oral selection command (group of 3 ver-
tical lines indicates begin, end of speech signal and speech recognition time stamps).
For commodity, pointing gestures are described by a distance from the current point-
ing position to an arbitrary target reference in the chessboard. Top-Right frame: (D)
When white player point the white queen (red circle), the corresponding context (white
circles) includes the pieces that can be taken by the queen: a rook, a knight and two
pawns. Bottom-Left frame: (E) Right user moving a piece while left user waits. (F) Left
user moving a piece while right user waits

current application context (a bishop in figure 5-D), the move is forbidden, and a
feedback shows the illegal nature. When a user is not pointing, all the information
to find the two required squares must be found in speech and context. In this
case, the current context is all the possible takes. To play without pointing, a user
utters the name of two non ambiguous pieces with a ‘take’ verb. For example, in
figure 5-D, the utterance “queen takes rook” works even without pointing, since
only one rook can be taken by the queen. But “queen takes pawn” is ambiguous
as two pawns can be taken by the queen.

5 Results

The tracker performs at about 11 Hz when one user is tracked and 9 Hz with
two users on a Pentium IV (3 Ghz). This is acceptable for such applications
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as chess game. Thanks to the tracking method used, there is few computational
cost differences between tracking one and two persons. This is a promising result
for tracking more than two persons although it has not been implemented yet.

Concerning the precision, some previous results obtained with a one person
interface and from experiments on 14 users showed that the pointed direction
is estimated with a precision of about 0.75 deg [3] (1.5 % of the diagonal of the
very large display (120”) for a user at 1.5 m of the large display). The precision
is the same when two persons interact. The system precision has been improved
since these experiments but experimental values have not been updated yet. The
tracker is robust to cluttered backgrounds (figure 6), and to skin-coloured arms
(figure 6-right). Users can sit or stand (figure 6-left) and move in the field of
the camera. Once detected, hands are tracked even when entering the other user
private area (figure 6-middle and 6-right).

Fig. 6. Some tracking results exemples. Rectangles: tracked body parts (blue: head,
red: 1st hand, green: 2nd hand). White lines: assignment of hands to a head. From left
to right: (1) One left-handed user sitting in the back, the other standing and pointing.
(2) Even when private areas overlap, body parts are still tracked and assigned correctly.
(3) Shiva posture, the tracker is robust to naked forearms and to freely moving users

6 Conclusion

A novel method has been presented to track body parts of two persons in quasi
real time. Some previous results showed that the pointed direction is estimated
with a good precision. This precision and the low computational cost of our
method allow its use in real time fusion with speech recognition. The use of
the application context during modalities fusion allow shorter multimodal com-
mands. As a result, SHIVA is a flexible interface where one or two users can
interact with gesture alone, speech alone or using speech-gesture multimodal
commands. The next step will be to test SHIVA with an application requiring
simultaneous cooperative interaction of both users.
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Abstract. An efficient articulated body tracking algorithm is proposed
in this paper. Due to the high dimensionality of human-body motion, cur-
rent articulated tracking algorithms based on sampling [1], belief prop-
agation (BP) [2], or non-parametric belief propagation (NBP) [3], are
very slow. To accelerate the articulated tracking algorithm, we adapted
belief propagation according to the dynamics of articulated human mo-
tion. The searching space is selected according to the prediction based
on human motion dynamics and current body-configuration estimation.
The searching space of the dynamic BP tracker is much smaller than
the one of traditional BP tracker [2] and the dynamic BP need not the
slow Gibbs sampler used in NBP [3–5]. Based on a graphical model sim-
ilar to the pictorial structure [6] or loose-limbed model [3], the proposed
efficient, dynamic BP is carried out to find the MAP of the body con-
figuration. The experiments on tracking the body movement in meeting
scenario show robustness and efficiency of the proposed algorithm.

1 Introduction

Accurate, robust, and efficient visual tracking of articulated objects such as hu-
man body/hand, has wide applications in human-computer interaction, motion
capture, video surveillance,augmented reality, annotation, and activity recogni-
tion [4, 7]. However, the articulated human body tracking is inherently a very
difficult problem due to: 1) high degree (usually 20–68) of freedom of the ar-
ticulated body movement [2, 6, 8, 9]; 2) large appearance change of body parts
during the movement; 3) occlusion between body parts; 4) no typical appear-
ance due to clothing; 5) fast movement of human arms and legs; 6) the posterior
distribution of body configuration is multimodal and spiky.

Many enlightening articulated body tracking algorithms appeared in recent
years. Bregler and Malik used exponential map to model the articulated twist.
After model the kinematic chain as the product of exponentials, a Newton-
Raphson style minimization is carried out to find the minimizer (the body con-
figuration) of the cost function [9]. The introduction of the exponential map is
a neat idea, but the Newton-Raphson is inherently a variant of the gradient de-
scent method. Therefore, the optimization procedure is likely to be trapped by
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local minima. We have mentioned above that the posterior distribution of body
configuration is multimodal and spiky. In other words, there are many local min-
ima in the objective function which usually make the local minimizer found by
the tracker different from the global minimizer, i.e. the optimal body configura-
tion given the current observation. The fact that body parts usually move very
fast compared with the common frame rate, further validates the claim. Anneal-
ing the particle filter may be one way to tackle this difficulty [1]. However, the
sampling based algorithms are usually very slow when large amount of particles
are required. The high dimensionality of articulated body motion requires large
number of particles even if the annealed particle filter is applied. According to
[1], the tracker using 10 annealing layers with 200 particles need around 1 hour
to process 5 seconds of footage.

Ramanan and Forsyth proposed a 2d tracker with automatic initialization,
which can track long video sequence [2, 10]. The continuous body configuration
space is discretized first and a variant of Belief Propagation (BP)[11–13], max
product, is then carried out on the loopy graphical model to find the approxi-
mate estimate of the MAP, i.e. the suboptimal body configuration given current
video input. BP is a very powerful algorithm, which reduces the computational
complexity of brutal force search from O(Nm) to O(N2m) for non-loopy graph.
Here N is the size of the domain of each node (the possible discrete values the
node can take) and m is the number of nodes in the graphical model. But usually
N , i.e. the domain size of each node, is very large in the tracking context. For
articulated 2d tracker, the configuration of each body part is a triplet (x, y, θ)T ,
representing the horizontal translation, vertical translation, and in-plane rota-
tion respectively. Suppose each axis is discretized into 20 bins, the searching
space for each node is 203. As we have pointed out,the computation complexity
of the 2d tracker is O(206 ·9). Therefore, the articulated tracker based on the BP
in the discretized space requires huge computational power or lots of cpu time.
The complexity would be even formidable if we want to realize a 3d articulated
tracker using the same approach.

Sigal et al [3] devised a 3D articulated body tracker and Sudderth et al
[4] came up with a articulated hand tracker both based on nonparametric BP
(NBP) [5] algorithm. In the framework of NBP, the large searching space is rep-
resented as mixture of Gaussians. For each iteration of NBP, the parameters of
the mixture of Gaussians are recomputed using Gibbs sampling. The compu-
tational complexity is reduced from O(N2m) to O(M · d · m), where d � N
is the components number of the mixture of Gaussians and M is the number
of samples. However, to ensure good approximation, the Gibbs sampler require
large number of particles, which make their articulated hand tracker inevitably
slow. According to [4], with 200 particles, their matlab implementation requires
about one minute for each NBP iterations.

To reduce the huge discretized searching space of BP while avoid the slow
Gibbs sampler used in NBP, we propose the dynamic BP framework. The basic
idea is, that the temporal constraints or human motion dynamics should NOT
be used to build the compatibility functions between the nodes of different frames
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as what is done in [2, 4]. Instead, the temporal constraints should be used to
limit the searching space of the nodes in different frames. Since the body motion
is continuous, the values that certain node can take at frame t should lie in the
neighborhood of the configuration of the corresponding node at frame t−1. The
size of neighborhood between corresponding nodes at different frames and the
neighborhood prior are determined by body motion dynamics. Please refer to
section 3 for detail. Our implementation of a 2d articulated body tracker based
on the dynamic BP framework run at around 2 frame/second for video with res-
olution of 1024× 768, which is around 100 times faster then our implementation
of the tracker based on BP. Also our experiments show the accuracy and the
robustness of our tracker.

This paper is organized as follows. The articulated body tracking model
with elastic constraints is introduced in section 2. BP on the whole discretized
searching space is also reviewed in this section. Section 3 discusses how to use the
human motion dynamics to limit the searching space of BP to achieve dynamic
BP. Experiment results and the discussion are given in section 4. And section 5
concludes the paper.

2 Articulated Body Model and Tracking Scheme

2.1 Graphical Body Model with Elastic Constraints

We model the 2D view of the human body as a connected card board model
shown in figure 1(a). In our body tracking framework, we use a “loose-limbed”
body model [6, 8] in which the limbs are not rigidly connected but are rather
“attracted” to each other. Instead of representing the body as a single 33-
dimensional kinematic tree, each limb is treated quasi-independently with soft
constraints between the position and orientation of adjacent parts. The model
resembles a Push Puppet toy which has elastic connections between the limbs
as shown in figure 1(b). For each body part, i.e. the node in the graph shown
in figure 1(c), the configuration space for each node is a 3 dimensional vector
space (x, y, θ), representing the horizontal translation, vertical translation, and
in-plane rotation respectively. The elastic constraints between body parts are
modeled as the Scene-Scene compatibility function Ψ(Xi,Xj). The closer the
two nodes in spacial distance, the bigger the scene-scene compatibility function.
The Image-Scene compatibility function Φ(Xk,Yk) model the similarity between
the tracked parts and the parts’ template.

In the probabilistic framework, the compatibility functions should be pro-
portional to the corresponding conditional distributions or join distributions,
i.e. Φ(Xk,Yk) ∝ P (Yk|Xk); Ψ(Xi,Xj) ∝ P (Xi,Xj). Since the graphical model
in figure 1(c) is a Markov Random Field (MRF), the joint probability over the
scenes Xi’s and observations Yk’s can be written as [13]:

P (X0,X1, . . . ,Xm−1,Y0,Y1, . . . ,Ym−1) =
∏
(i,j)

Ψ(Xi,Xj)
∏
k

Φ(Xk,Yk) . (1)
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(a) (b)

(c)

Fig. 1. The model setup for the 2D articulated body tracker. (a) The card board
model of human body with elastic joints. (b) Toy Push Puppet with elastic joints.
(c) The loose attractive graphical body model, on which the belief propagation is carried
on. X0: Torso configuration; X1: Right upper arm configuration; X2: Right forearm
configuration; X3: Left upper arm configuration; X4: Left forearm configuration; X5:
Right thigh configuration; X6: Right crus configuration; X7: Left thigh configuration;
X8: Left crus configuration; Yi is the observation of Xi. The random variable Xi’s
only directly depend on their neighbors

Thus given current image observation, the MAP estimation of the configu-
ration of the jth body part X̂jMAP is:
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X̂jMAP = argmax
Xj

max
[allXi,i�=j]

P (X0,X1, . . . ,Xm−1,Y0,Y1, . . . ,Ym−1)

= argmax
Xj

max
[allXi,i�=j]

∏
(i,j)

Ψ(Xi,Xj)
∏
k

Φ(Xk,Yk) . (2)

For a non-loopy graph (like the graph in figure 1(c)), Eqs. 2 can be computed
by iterating the following steps [11] until the solution converges.

X̂jMAP = argmax
Xj

Φ(Xj ,Yj)
∏
k

M
[k]
j , (3)

where k runs over all scene neighbors of node Xj . M
[k]
j is the message from node

Xk to node Xj . M
[k]
j is updated according to:

M
[k]
j = max

[Xk]
Ψ(Xj ,Xk)Φ(Xk,Yk)

∏
l �=j

M̃
[l]
k , (4)

where M̃
[l]
k is M

[l]
k from the previous iteration. The initial M

[l]
k ’s are set to

uniformly 1 in the discretized searching space of the variable Xi’s.
By using BP described above, we can efficiently find the MAP estimation of

the high-dimensional body configuration given the current image observation.
And the computational complexity is reduced from O(Nm) (when brutal force
search is applied) to O(N2m) (using BP).

2.2 Substantiating the Compatibility Functions

In our implementation of the tracker, the template of each body part is manually
labeled at the first frame of the video, or, at a typical frame where no self-
occlusion exists. The template for each body part is actually an image patch
encompassed by a polygon as shown in figure 2. Denote the template for jth
body part as Tj and the warped version of the template Tj 〈Xj〉 according to
the configuration parameter Xj = (x, y, θ)T . Denote the tth frame of the tracking
video as It and the observed image patch for jth body part with configuration Xj

is therefore Ij 〈Xj〉. The image-scene compatibility function Φ(Xk,Yk), which
is proportional to the conditional probability P (Yk|Xk) is therefore defined as

Φ(Xk,Yk) ∝ P (Yk|Xk)
= Ck exp (SSDrgb (Ij 〈Xj〉 , Tk 〈Xk〉)) , (5)

where SSDrgb (·, ·) is the Sum of Squared Difference (SSD) between two image
patch in RGB color space and Ck the normalization constant.

The elastic constraints between body parts, i.e. the scene-scene compatibility
function Ψ(Xi,Xj) is characterized by the Euclidean distance between the joint
points of the adjacent body parts. For two adjacent body parts i and j, denote
the soft joint on ith part, which is elastically connected to the jth part, as
Ji→j . The corresponding soft joint on ith part is Jj→i. The 2D location of Ji→j
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with ith body part’s configuration Xi, is Ji→j〈Xi〉. Therefore the scene-scene
compatibility function is defined as:

Ψ(Xi,Xj) = exp
(
K ‖Ji→j〈Xi〉 − Jj→i〈Xj〉‖2

)
, (6)

where K is the spring constant depending on how “elastic” we want the body
card model to be.

With the compatibility functions define above, BP can be carried out on the
body graphical model as discussed in section 2.1.

3 Using the Motion Dynamics
to Limit the BP Searching Space

The belief propagation has reduced the computation complexity from O(Nm) to
O(N2m), however, for articulated body tracking, N , i.e. the possible discretized
state for each node, is still very large. In the graphical model for 2d body tracking
shown in figure 1, each node represents all possible 2d configurations of the
body part in the loosely connected model. For each body part, the possible
configuration is 3-dimension vector (x, y, θ)T . Suppose we only have 20 discrete
state for each dimension, thus N = 203 and m = 9 (9 body parts). Even if BP
is applied, the total searching complexity is still O

(
(203)2 · 9). This makes the

BP based tracker either impractical or extremely slow .
Previous work [2, 4] use the temporal constraints or human motion dynamics

to build the compatibility functions between the nodes at different frames. This
kind of approach can improve the robustness of the tracker at the cost of more
computation because more compatibility functions are added into the graphical
model.

To reduce the computational complexity, the temporal constraints is used to
limit the searching space of the nodes in different frames. Since the body motion
is continuous, the value that certain node can take at frame t should lies in the
neighborhood of the configuration of the corresponding node at frame t−1. The
size of neighborhood between corresponding nodes at different frames and the
neighborhood prior are determined by body motion dynamics. Therefore Eqs. 2
should by adapted as:

X̌(t)
jMAP

= argmax
X

(t)
j ∈N

(
X

(t−1)
j ,σ

) max
X

(t)
i

∈N(X(t−1)
i

,σ)
i�=j

∏
(i,j)

Ψ(X(t)
i ,X(t)

j )
∏
k

Φ(X(t)
k ,Y(t)

k ) , (7)

where N
(
X(t−1)

i , σ
)

is the neighborhood the ith body part’s configuration at

frame t−1, denoted as X(t−1)
i . Here σ is the scale parameter we choose to adjust

the neighborhood size.
Then BP is carried on the discretized searching space “pruned” by consider-

ing body motion dynamics and temporal consistency. The dynamically pruned
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searching space is much smaller the original searching space. For the body track-
ing task in our experiment, the dynamic BP reduce the complexity of BP from
O
(
206 · 9) to O

(
56 · 9) if we choose the hypercube of size 5 × 5 × 5 as the

neighborhood of the previous configuration.
To summary, the propose dynamic BP algorithm can reduce the computa-

tional complexity of BP from O(N2d) to O(H2d), where H � N . H is the
volume of a small neighborhood of the configuration of t− 1 frame, in which the
dynamic BP is carried out. Usually the larger the N is, the more the dynamic
BP can reduce the computation. The efficiency of the dynamic BP depends on
how well we can estimate the dynamics of the body motion. Ideally the dynamics
should be learn from training data.

4 Experiment Results

We realize a 2d articulated body tracker based on dynamic BP and test it in
real-meeting scenario. The 2d tracker achieve robust tracking for both frontal
view (figure 2) and oblique view (figure 3). For the oblique view, at some frames
the tracker lost the track of the lower arms. This is due to the self-occlusion and
large 3D motion. The 2D articulated tracker cannot handle above 2 situations,
therefore an articulated 3d tracker is our next step. However, the results in
figure 3 do show the power of the graphical model. As soon as the person of
interest takes a pose not very different from the initial pose, the tracker can
recover true lower arm positions by inference from the torso and upper arm
positions. We also test our tracker on a walking sequence with scale change. The
results are shown in figure 4. The tracker loses the lower arms for some frames
due to shading and similarity between the background and the skin color. So we
will combine edge and color as features in our future work.

The proposed dynamic BP accelerate the tracker a lot. For each node, the
size of over all searching space is 203 = 8000. Therefore the complexity will be
O(206 ·9) for one frame of video if we directly apply BP, while after dynamically
prune the searching space, the dynamic BP has computational complexity of
O(56 · 9), which is quite acceptable. Our articulated 2d tracker can achieve 2
frames/second in the shown 1024× 768 video.

5 Conclusion

A 2d articulated body tracker based on dynamic BP on the graphical model is
proposed in this paper. The discretized searching space is “pruned” by consider-
ing body motion dynamics and temporal consistency. The dynamically pruned
searching space is much smaller the original searching space and therefore dras-
tically reduce the computational complexity of the articulated tracker based
on BP. The experiments on articulated tracking of the body movement in real
meeting scenario show robustness and efficiency of the proposed algorithm. This
articulated tracker is promising with the application to HCI and video annota-
tion. The future step is going to 3D and further integrate temporal constraints
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Fig. 2. 2D articulated body tracking results for meeting scenario, frontal view
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Fig. 3. 2D articulated body tracking results for meeting scenario, oblique view

Fig. 4. 2D articulated body tracking for a walking sequence

across the whole video instead of between adjacent frames, like what we have
done in [14].
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Abstract. In this paper we construct a novel human body model using convolu-
tion surface with articulated kinematic skeleton. The human body’s pose and 
shape in a monocular image can be estimated from convolution curve through 
nonlinear optimization. The contribution of the paper is in three folds: Firstly, 
human model based convolution surface with articulated skeletons is presented 
and its shape is deformable when changing polynomial parameters and radius 
parameters. Secondly, we give convolution surface and curve correspondence 
theorem under weak perspective projection, which provide a bridge between the 
3D pose and 2D contour. Thirdly, we model the human body’s silhouette with 
convolution curve in order to estimate joint’s parameters from monocular im-
ages. Evalution of the method is performed on a sequence of video frames 
about a walking man.  

1   Introduction 

Over the course of the past decade, human motion analysis has received more and 
more attentions in computer vision research community with applications in areas like 
marker-less motion capture for animation, virtual reality, human-computer interaction 
and intelligent surveillance, etc. Various model-based methods have been proposed 
for the estimation and analysis of full body’s structure, therefore many models, de-
formable or rigid, [2,8,9,10,13,14,15,20] are given for human motion capture or track-
ing.  

Our goal in this paper is to build a new human body model using convolution sur-
face whose shape can be modulated by polynomial function. Convolution surface was 
firstly introduced into computer graphics by Bloomenthal and Shoemake[1]. In fact, 
convolution surface is a kind of special implicit surface using 3D convolution be-
tween skeleton (line or curve) and some kernels. As mentioned in Xiaogang Jin [3], if 
the kernels are modulated by a polynomial function along a skeleton, different shape 
will be produced along the skeleton. Chiew-Lan Tai [4] presents prototype model 
from sketched silhouettes based on convolution surfaces. 

Another goal of the paper is to determine the model’s shape and estimate the 
body’s pose from image. We extract the silhouette of a human body with different 
gestures and trace the boundary of the human body’s region in image, then we ap-
proximate the contour with convolution curve. According to the correspondence theo-
rem between 3D surface and 2D contour, we can estimate the 3D joint parameters by 
fitting the convolution curve with points of human contour. The relevant polynomial 
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coefficients, which are used to adjust the shape of the model, can be estimated in 
model initialization process. 

In the past decades, many methods about deformable model reconstruction and 
human motions capture based on image or video are presented in computer vision. 
Some of methods are proposed depending on extracting silhouettes and fitting body 
models to them. The researches on model based human motion analysis have been 
reviewed in [5][6][7]. Traditionally human bodies are represented as stick figures [8], 
2D contour [9] or volumetric model [10]. 

Recent works are inclined to make more accurate deformable human model with 
ingenious computer graphics techniques. C.Bregler [11][12] made use of factorization 
techniques, which built the model with a linear combination of prototype shapes. 
Under this model, the tracking matrix is of higher rank, and can be factored in a three 
steps process to yield pose, configuration and shape. But the technique has not been 
applied in full body tracking. R.Plankers and P.Fua [14] proposed “articulated soft 
objects”, in which the skin surface is presented as a series of implicit volumetric 
primitives attached to skeletons. Each primitive defines a field function (soft objects) 
and the skin is taken to be a level set of the sum of these fields. The model is opti-
mized by observations from silhouettes and stereo depth. Though Plankers made use 
of very elaborate method and got a very accurate model, the model requires too many 
parameters to represent. P.Sand and L.McMillan [13] described a very novel method 
for human body reconstruction from silhouettes. They represent the human skin sur-
face using points along needles that are rigidly attached to a skeleton. C.Sminchisescu 
[15] proposed a human body model consists of kinematics skeletons of articulated 
joints covered by ‘flesh’ built from super-quadric ellipsoids with additional tapering 
and bending parameters. 

The human model is described in section 2. Image process is mentioned in sec-
tion 3; Parameters estimation method is described in Section 4. The experiments list 
in Section 5. 

2   Human Model 

The convolution surface model in this paper is constructed through convolution be-
tween articulated skeletons and Cauchy kernel function, and the whole body needs 32 
articulated line skeletons.  

2.1   Convolution Surface and Curve 

Bloomenthal and Shoemake [1] introduced convolution surface along line skeleton as 
a logical extension of point based implicit surface models. Xiaogang Jin [3] presents 
an analytical solution for convolving line segment skeletons with a variable kernel 
modulated by a polynomial function. 

A convolution surface is a level set of points ),,( zyx that satisfy  

),,( zyxF T− = 0   (1) 

T  is constant and ),,( zyxF is field function, achieved through a 3D convolution of a 

kernel function with a skeleton function )(Pg : 
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−
V

dvQPfQg )()( T− = 0 (2) 

integrating all the points VQ∈  

∉
∈

=
VP
VP

Pg
0
1

)(    (3) 

Equ.2 can be expressed as the following form: 
))(( Pgf ⊗ T−  = 0          (4) 

A line segment of length l with a start point b  = ),,( 321 bbb  and unit direction 

a = ),,( 321 aaa , can be noted parametrically as: 

atbtL .)( +=        lt ≤≤0     (5) 

b  and a  are 3 dimensional vector. Letting bPd −= = ),,( 321 bzbybx −−− , the 

squared distance from a point P  to a point on the line )(tL  descriped in Fig.1, is 

adttdtr •−+= 2)( 2
22

   )(tLP∉  (6) 

Cauchy function [16] was proved to be a very useful kernel in surface modeling: 

222 )1(
1)(
rs

rf
+

=       (7) 

s  is radius parameter used to control the width of the kernel. Equ.2 can be regarded 
as a line integral with unit line density. In this section we will introduce a polynomial 
density distribution to the line: 

dt
rs

tq
l n

i

i
i 222

0 0 )1(
1)(

+=
T− = 0 (8) 

We choose the first two coefficients 1q  and 2q to construct a human model with 32 
skeletons. Convolution curve can be achieved though a 2D line segment convolved 
with 2D kernel function modulated by polynomial function. 

 

Fig. 1. Line segment L and vector r  
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dt
rs

tq
l 1

i

i
i 222

0 0 )1(
1)(

′+

′

=
T− =0 (9) 

l ′  is the length of a 2D line segment L′ , and r ′ is 2D vector 

adttdtr ′•′−+′=′ 2)( 222
   )(tLP ′∉′  (10) 

where b ′  is the beginning point of L′ , a ′  is unit direction of L′ , and 

bPd ′−′=′ = ),( 21 bybx ′−′− . 
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Fig. 2. Adjusting s and (q0, q1) can change the shape of the convolution surface and curve 

2.2   Convolutions Surface and CurveCorresponedence 

In this section, we present convolution surface and curve correspondence theorem 
under weak perspective projection without proof, which provide a bridge between the 
3D pose and 2D contour. 

Theorem: [Convolution Surface And Curve Correspondence Theorem Under Weak 
Perspective Projection] 
If a surface ),,( zyxP = 0 satisfying Equ.8 is projected onto a plane along z direction 
under weak perspective projection, the contour on the projection plane is almostly a 
convolution curve ),( yxC = 0 and its line skeleton L′  is the weak perspective projec-
tion of L . 

Definition: ),,( zyxP  and ),( yxC  are called convolution surface and curve corre-

spondence under weak perspective projection, if ),,( zyxP  and ),( yxC  satisfying 
convolution surface and curve correspondence theorem. 
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2.3   Human Body Model and Initialization 

In this section, we constructed the human body model with 32 articulated skeletons. 
The pose of the model can be easily controlled when changing the joint angles of the 
skeletons. The model surface can be represented by the following formula: 

0)
)1(

1)((
31

0 222
0

1

0
=−

+=
Tdt

rs
tq

j jj

l
i

ij

j

 (11) 

where ijq is the i th parameter of the j th skeleton. The model shape can be deformed 

when changing js and ijq .  

A typical model in our paper has about 23 joint parameters JX , plus 14 shape pa-

rameters DX  and 5 global location parameters LX . A completed model can be en-

coded as a single parameter vector ),,( LDJ XXXX = . In this paper, the articulated 
skeletons are modeled with twists relative to the center of the body [11][19]. Some 
joint angles will be limited in this paper, for example the elbows and the knees cannot 
bend backward and the neck can rotate in a limited range etc. Two gestures in differ-
ent viewpoint are shown in Fig. 3.  

The correspondence convolution curve of the model is  

0)
)1(

1)((
31

0 2
2

20

1

0
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=

′
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tq
j

jj

l
i

ij

j

 (12) 

The numbers of DOF of articulated skeleton joints are described in Table1.  
In human model initialization process, the proportion of every skeleton is designed 

according to anthropometry. We estimate the shape parameters DX  through fitting 
the Equ.12 using human contour points on image if given a specific pose (It is as-
sumed that we know the joint parameters). Trust region method [17][18] for nonlinear 
minimization methods are used to estimate the shape parameters. 

 
 a. b. c. d. e. f. 

Fig. 3. a, b, c and d, e, f show human body with two gestures in different viewpoint 

3   Foreground Segmentation and Boundary Smoothing 
Background subtraction has been widely used in foreground detection and segment 
where the observed object moves in static background. Firstly, we model the back-
ground of video image sequence using the method LMedS (Least Median of Squares) 
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method [21]. Then subtraction method in [22] is introduced to segment the fore-
ground. Finally, we use morphological operators to eliminate the spurious pixels and 
small holes. The result is shown in Fig 5. In order to accelerate the parameter optimi-
zation, we must smooth the human contour to get rid of the jagged boundary after the 
boundary tracing. Here 5-neighborhood average method is used to smooth the con-
tour, in Fig 6. Assumed that ),( ii yx ′′  Mi ,,2,1∈  are points on the traced contour, 
the smoothed contour points are: 

),( ii yx = )
5

,
5

(

2

2

'
2

2

'
+

−

+
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 a. b. c. d. e. f. 

Fig. 4. a and b shows the skeleton and convolution surface model without image information; 
b,c,d and f show the initialization process with a specified gesture 

 
 30th frame 33th frame 36th frame 39th frame 

 
 30th frame 33th frame 36th frame 39th frame 

Fig. 5.First row is the gray video sequences and second row is image after foreground segmen-
tation 
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Fig. 6. The figure with red line is the rough contour and the figure with blue line is the contour 
after smoothing 
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Table 1. The DOF numbers of the human model 

Body part Number of DOF 
The whole body 4 

Shoulder 1*2 
Upper arm 3*2 
Lower arm 1*2 

Hand 1*2 
Thigh 3*2 
Knee 1*2 
Foot 1*2 
Neck 1 

4   Joint Parameters Estimation 

In this section, we estimate joint and global location parameters of the human pose 
from monocular image using deterministic nonlinear constraint optimization method. 
We do not care about the scene depth for the camera model we use is weak perspec-
tive projection. 

4.1   Object Function 

The projection contour of the human model is approximated with a convolution curve 
in Equ.12. If given 
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X  is parameters vector to be estimatied. Given the contour point ),( kk yx , 

Mk ,,2,1∈ , we attempt to describe the objective function as 

)(XF =
k

kk XyxC ),,(min 2  (15) 

4.2   Joints and Skeletons Constrains 

In high dimensional parameters optimization, it is very difficult to get global optimi-
zation solution. Constrains term must be given for reduce local minima. Here we give 
a joint and skeleton constrains term. It means the 2d points, which are the orthogonal 
projection points of 3D joint points on arms, hands, legs, feet and head, must ap-
proximate the human region skeleton closely as possible.  

Firstly the skeleton of the human region in image should be subtracted. Assumed 
that Q is skeleton point set and P  is the point set of 2D body joint points. We define 
the distance between a point Ppi ∈ and Q,  

2
min),( jiji qpQpD −=    Qq j ∈∀  (16) 



Recover Human Pose from Monocular Image Under Weak Perspective Projection      43 

The constraint term will be decriped as: 

)(XG =
i

i QpD ),( < T (17) 

Equ.17 is the nonlinear constraint of objective function and T  is an experimental 
number. 

4.3   Nonlinear Optimization 

Human pose estimation can be reduce to the following nonlinear optimization prob-
lem: 

TXG
XF

<)(ts
)(min

 (18) 

Many classical methods can solve this kind of problem [17][18]. 

 
Fig. 7. The sketch map of the joint and human skeleton likelihood 

4.4   Initial Value 

The very important step is to estimate initial values of parameters. Our estimation has 
to start with an initial known pose in the first frame and the init joint value in next 
frame equals to the last estimation result for the correspondence joints have small 
change between two consecutive frame, while the init location value will be set to the 
center of the human region in image. 

5   Experiments 
This section experiments are given to show the performance of of our estimation 
methods with a sequence of video image from CMU motion data and we recover a 
walking human pose with 3D model. We provide many test result including the re-
covered 3D human model. 

The video frame has the resolution of 352*240 pixels. First we show a sequence of 
video frames (after RGB convert to gray) in ath row of Fig.8. In bth row, blue line in 
Fig.8 is the human contour from image and the green line is convolution curve 
(Enlarged in Fig.9); blue points in figure are orthogonal projection of 3D joint points. 
In cth rows, we give the estimated human skeleton. In dth and eth row of Fig.8, we 
show the recovered pose of every frame. 
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a.  

b.  

c.     

d.  

e.   

Fig. 8. Continuous 6 frame image and the recovered 3D model of a walking man from CMU 
video datasets. The ath row shows six video sequences of a person walkinge. The bth row shows 
the human contour and convolution curve. The cth row shows the estimated 3D skeleton. The 
dth and eth row show the recovered 3D walking pose 

In the list experiments, our methods works well without severe self-occlusion be-
cause we can make use of the joint and image skeleton constrain. The tracking work 
under severe self-occlusion will be done in the future work.  

We also do a contrast experiment in optimization algorithm, described in Fig.9. 
One group uses joint and skeleton constrain and another group does not. The first 
group shows a well estimation result and the second group is trapped in local minima. 

6   Conclusions and Future Work 

We have built a new human body model using convolution surface in this paper. 3D 
human model parameters determination method is also presented through convolution 
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surface and curve correspondence. We extract silhouette of a human with specified 
gesture and initilize the deformable model. The convolution surface and curve corre-
spondence theorem under weak pespective projection is proved, which brings a bridge 
between the 3D convolution surface and 2D convolution curve. We also present a 
new constraint (joint and skeleton distance likelihoods), which is very efficient with-
out severe self-occlusion. 

In future work we will give a new human tracking framework from monocular im-
age and solve the problem of the joint angle ambiguity under monocular image Limb 
self-occlusion and tracking algorithm, not mentioned in current work will be also our 
aim. 

    

Fig. 9. Fist image shows us the optimization with joint and skeleton constrain and second im-
age shows us the optimization without joint and skeleton constrain 
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Abstract. Visual detection and tracking of humans in complex scenes is a chal-
lenging problem with a wide range of applications, for example surveillance and
human-computer interaction. In many such applications, time-synchronous views
from multiple calibrated cameras are available, and both frame-view and space-
level human location information is desired. In such scenarios, efficiently com-
bining the strengths of face detection and person tracking is a viable approach
that can provide both levels of information required and improve robustness. In
this paper, we propose a novel vision system that detects and tracks human faces
automatically, using input from multiple calibrated cameras. The method uses an
Adaboost algorithm variant combined with mean shift tracking applied on single
camera views for face detection and tracking, and fuses the results on multiple
camera views to check for consistency and obtain the three-dimensional head
estimate. We apply the proposed system to a lecture scenario in a smart room,
on a corpus collected as part of the CHIL European Union integrated project.
We report results on both frame-level face detection and three-dimensional head
tracking. For the latter, the proposed algorithm achieves similar results with the
IBM “PeopleVision” system.

1 Introduction

Visual detection and tracking of humans in complex scenes is a very interesting and
challenging problem. Often, input from multiple calibrated cameras with overlapping
fields of view is available synchronously, and information about both the frame-view
and space-level human location is desired. One such scenario of interest, considered in
this paper, is human-computer interaction in smart rooms, where a speaker is presenting
a seminar in front of an audience. The scenario is of central interest within the CHIL
European Union integrated project, “Computers in the Human Interaction Loop” [1]. In
data collected as part of the CHIL project, four fixed calibrated cameras located at the
corners of a smart room capture video data, with the goal of locating and identifying the
seminar presenter. Hence, both three-dimensional head position estimation, as well as
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face detection at the available frame views is required. The information can be further
utilized to obtain close-up views of the presenter, based on steerable pan-tilt-zoom cam-
eras, in the seminar indexing and annotation, etc. Clearly therefore, in such a scenario,
a visual system that combines face detection, tracking, and multicamera processing is
feasible and desirable.

Significant research work has been devoted to the problems of face detection, single-
camera and multicamera tracking. For face detection, a machine learning based ap-
proach has proved the most effective. For example, Rowley et al. [2] present a face
detection system based on retinally connected neural networks (NNs), accepting as in-
put the preprocessed image pixel values directly. Post-processing is then performed by
appropriately combining the NN outputs by “and”/“or” operators, or by using an ad-
ditional neural network to arbitrate them. Roth et al. [3] use a network of linear units.
The SNoW learning architecture is specifically tailored for learning in the presence of
a very large number of features. The system of Viola and Jones [4] makes a successful
application of AdaBoost to face detection. The resulting system is an efficient, real-time
frontal-view face detector.

The ability to detect faces under varying head pose is important in many real ap-
plications. A reasonable treatment for multiview face detection is a view-based method
within the appearance-based framework. In the system of Schneiderman and Kanade
[5], multiresolution information is used for different levels of a wavelet transform. The
algorithm consists of an array of five face detectors in the view-based framework. Each
is constructed using statistics of products of histograms computed from examples of the
respective view. In general, while great success has been achieved for frontal-view face
detection, much engineering work is needed for real-time multiview face detection.

For tracking, there also exist many successful algorithms proposed in recent years.
In [6], Comaniciu et al. introduce an algorithm for real-time tracking of non-rigid ob-
jects seen from a moving camera. The central computational module is based on the
mean shift iterations and finds the most probable target position in the current frame.
In [7], Isard and Blake propose a new algorithm, called “condensation”. The algorithm
uses “factored sampling”, previously applied to the interpretation of static images, in
which the probability distribution of possible interpretations is represented by a ran-
domly generated set. The method uses learned dynamical models, together with visual
observations, to propagate the random set over time. The result is highly robust tracking
of agile motion that runs in near real-time.

Multiple cameras provide additional information concerning the objects of interest,
which could be used to improve the tracking system performance. Many multicamera
tracking algorithms have been proposed in recent years. For example, in [8], Black
and Ellis present such a method in the context of surveillance. Their approach exploits
multicamera views to resolve object occlusion. Moving objects are detected by using
background subtraction, and viewpoint correspondence between the detected objects
is established by using ground plane homography. In [9], Hampapur et al. use two or
more calibrated cameras to triangulate a moving object’s position, originally obtained
by background subtraction, and determine the steering parameters for a third, pan-tilt-
zoom camera that is calibrated to the same coordinate system. The pan-tilt-zoom camera
automatically acquires zoomed-in views of a person’s head, while the person is in mo-
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Fig. 1. Block diagram of the proposed multicamera face detection and tracking system

tion within the monitored space. An extended version of this system is also considered
in this paper for the CHIL seminar presenter tracking task.

Even though there exit so many successful algorithms for face detection and track-
ing, how to efficiently combine their strengths, in order to obtain robust and real-time
performance within a multicamera framework, is still an interesting and very impor-
tant problem. Our work focuses on exactly this problem, in the context of the CHIL
seminar task discussed at the beginning of this section. In particular, we propose to
solve the problem by taking advantage of multiview face detection, color-based mean
shift tracking, motion analysis, and utilizing calibration information for the available
camera views. The overview diagram of our approach is depicted in Fig. 1: First, a
three-dimensional face detection and tracking system is initialized by combining mo-
tion history, calibration information, and multiview face detection [10]. Subsequently,
for tracking, a face model is constructed based on the color histogram of the face region
in the hue/saturation/value (HSV) color space, and mean shift tracking [6] is applied to
track the presenter’s face in different views independently. At each frame, the tracking
component is verified by local face detection and the calibration information. If it is
determined that the tracking system has lost track, the detection and tracking system is
re-initialized and the face model updated.

The paper is organized as follows: Section 2 presents FloatBoost [10] learning,
which is applied to multiview face detection. The mean shift iteration algorithm [6]
for face tracking is discussed in Section 3, and the proposed, combined vision system
for multiview face detection and tracking is described in Section 4. For comparison
purposes, an alternative approach based on the IBM “PeopleVision” system is described
in section 5. Face detection and tracking experiments are presented in section 6, and
conclusions are drawn in Section 7.

2 FloatBoost Learning for MultiView Face Detection

In [4], the AdaBoost algorithm was successfully applied to frontal face detection re-
sulting in the first real-time frontal face detection system. However, if considered as a
feature selection algorithm, AdaBoost is a sequential forward search procedure, which
suffers from the so-called “nesting effect”. Attempts to prevent the nesting of feature
subsets have led to the development of floating search methods. FloatBoost [10] incor-
porates the idea of “floating search” [11] into AdaBoost to solve the “nesting effect” en-
countered in the sequential search of AdaBoost. A quality improvement of the selected
features is gained at the cost of increased computation due to the extended search. In
this paper, the FloatBoost learning algorithm is applied to multiview face detection in
the smart room seminar scenario.
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2.1 AdaBoost Learning

For two class problems, let us assume that a set of N labeled training examples is
available, (x1, y1) ,..., (xN , yN), where yi ∈ {+1,−1} is the class label associated
with example xi . For face detection, xi is an image sub-window of a fixed size (e.g.
20×20) containing an instance of the face (yi = +1), or nonface (yi = −1) pattern.
In the notion of RealBoost (a real version of AdaBoost [4] as opposed to the original
discrete one), a stronger classifier is a linear combination of M weak classifiers

HM (x) =
M∑

m=1

hm(x) , (1)

where hm(x) ∈ 	 are weak classifiers. The class label for a test x is obtained as
H(x) = sign{HM(x)} (an error occurs when H(x) 
= y), while magnitude |HM (x)|
indicates the confidence.

In boosting learning [12, 13], each example xi is associated with a weight wi, and
the weights are updated dynamically using a multiplicative rule according to the errors
in previous learning, so that more emphasis is placed on the examples that are erro-
neously classified by the weak classifiers learned previously. This way, the new weak
classifiers will “focus more attention” to those examples. The stronger classifier is ob-
tained as a proper linear combination of the weak classifiers.

The “margin” of an example (x, y) achieved by H(x) (a single or a combination
of weak classifiers) on the training examples can be defined as yH(x). This can be
considered as a measure of the confidence of the h’s prediction. The following criterion
measures the bound on classification error [13]

J(H(x)) = Ew(e−yH(x)) =
N∑

i=1

e−yiH(x), (2)

where Ew(•) stands for the mathematical expectation with respect to weight w over the
examples (xi, yi).

The AdaBoost method constructs h(x) by stage-wise minimization of (2). Given
the current HM−1(x) =

∑M−1
m=1 hm(x), the best hM (x) for the new strong classifier

HM (x) = HM−1(x) + hM (x) is the one which leads to the minimum cost

hM = arg min
h+

J(HM−1(x) + h+(x)) . (3)

2.2 FloatBoost Learning

AdaBoost is a sequential forward search procedure using the greedy selection strategy.
Its heuristic assumption is the monotonicity. The premise offered by the sequential pro-
cedure can be broken down when the assumption is violated. FloatBoost [10] incorpo-
rates the idea of floating search [11] into AdaBoost to overcome the non-monotonicity
problems associated with AdaBoost. The sequential floating search (SFS) method [11]
allows the number of backtracking steps to be controlled instead of being fixed before-
hand. Specifically, it adds or deletes l = 1 feature and then backtracks r steps, where
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r depends on the current situation. It is such a flexibility that amends limitations due
to the non-monotonicity problem. A quality improvement of the selected features is
obtained at the cost of increased computation due to the extended search. The SFS al-
gorithm performs very well in several applications [14]. The idea of floating search is
further developed in [15], by allowing more flexibility for the determination of l.

These feature selection methods, however, do not address the problem of (sub-)
optimal classifier design based on the selected features. FloatBoost combines them into
AdaBoost for both effective feature selection and classifier design.

Let HM = {h1, ..., hM} be the so far best set of M weak classifiers; J(HM ) be
the criterion which measures the overall cost of the classification function HM (x) =∑M

m=1 hm(x) build on HM ; Jmin
m be the minimum cost achieved so far with a linear

combination of m weak classifiers for m = 1, ..., Mmax, where Mmax denotes the max-
imum number of features (iterations) allowed in the boosting algorithm, initially set to a
large value before the iteration starts. The FloatBoost learning [10] procedure involves
training inputs, initialization, forward inclusion, conditional exclusion and output.

In the forward inclusion step, the currently most significant weak classifier is added
one at a time, which is identical to AdaBoost. In the conditional exclusion step, Float-
Boost removes the least significant weak classifier from HM , subject to the condition
that the removal leads to a lower cost than Jmin

M−1. Supposing that the removed weak
classifier was the m′-th in HM , then hm′ , ..., hM will be re-learned. The above steps
are repeated until no more removals can be performed.

3 Mean Shift Tracking

Computational complexity is critical to most tracking applications, and therefore, ex-
haustive search in the neighborhood of the predicted target location for the best candi-
date is in most cases prohibitive. As a solution to this problem, mean shift tracking has
been proposed [6]. Mean shift tracking is a real-time algorithm that aims to maximize
the correlation between two statistical distributions.

The correlation or similarity between two distributions is expressed as a measure-
ment derived from the Bhattacharyya coefficient [6]. Statistical distributions can be
built using any characteristic discriminating to a particular object of interest. A model
might use color, texture, or include both. In this paper, we model the target using the H
channel in the HSV color space.

The discrete density q is estimated from the m-bin H-channel histogram of the
HSV color in the face region, and p is estimated at a given location y from the m-bin
histogram of the face candidate. The sample estimate of the Bhattacharyya coefficient
is given by

ρ̂(y) ≡ ρ(p̂(y), q̂) =
m∑

u=1

√
p̂u(y)q̂u . (4)

The distance between the two distributions can then be defined as

d(y) =
√

1 − ρ(p̂(y), q̂) . (5)

Starting at the predicted location y of the target computed by Kalman filtering [17],
we search for the new target location in the current frame using mean shift iterations.
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Fig. 2. Schematic diagram of the audio-visual sensors installed in the smart room at the University
of Karlsruhe, Germany, as part of the CHIL project [1]. Data recorded by the four fixed cameras
cam1–cam4 are used in our experiments

To minimize the distance (5), or, equivalently, maximize the Bhattacharyya coeffi-
cient, the Taylor expansion of p is used around the value of the coefficient at the target
predicted position yo. This yields

ρ[p̂(y), q̂] ≈ 1
2

m∑
u=1

√
p̂u(ŷo)q̂u +

1
2

m∑
u=1

p̂u(y)

√
q̂u

p̂u(ŷo)
. (6)

Position yo can be just set to the current object position, or can be determined by
Kalman filtering, as in our system.

The first term in (6) is independent of y, and the second term can be efficiently
achieved based on mean shift iterations. This iterative optimization maximizes the value
of Bhattacharyya coefficient in equation (4). At each iteration, a new location of the ob-
ject is derived based on the mean shift vector [6]. Compared with exhaustive search, this
iterative optimization algorithm is very efficient, with typically only several iterations
needed to find the optimal target location.

4 Joint MultiCamera Face Detection and Tracking

As discussed in the Introduction, in this paper, we consider a particular scenario, where
multiple calibrated cameras are set up in a smart room. The goal is to detect and track
the presenter’s face in the camera views (whenever visible), and to track the position of
the presenter’s head in the three-dimensional smart room space.

The setup of the room is as depicted in Fig. 2. This corresponds to the smart room lo-
cated at the University of Karlsruhe, Germany, one of the CHIL project partners [1, 19].
Similar rooms are being set up in a number of CHIL project partners [1]. The room di-
mensions are 5.90×7.10 m, with a ceiling height of 3 m. A number of sensors are
installed in the room which include the four fixed cameras, providing the data used in



A Joint System for Person Tracking and Face Detection 53

Fig. 3. Example frames captured by the four fixed cameras of the CHIL smart room

this paper. The cameras are located at the corners of the room, at about 2.7 m heigh (see
also Fig. 2). They are SONY DFW-V500, and capture color data at a 640×480 pixel
resolution and 15 frames per second through a firewire interface. For storage purposes
and ease of access, JPEG compression is used for each frame. The cameras are synchro-
nized and calibrated by the calibration toolbox [18], hence their relative position and
orientation are known. A sample of synchronized images from the four camera views
is shown in Fig. 3.

To detect and track the location of the presenter in the seminar room, three compo-
nents are integrated in the proposed visual system: Initialization, tracking, and a reini-
tialization decision (see also Fig. 1). Notice that in the currently implemented algorithm,
only two camera views are utilized. The three components, based on processing the two
views, are described in more details in the following.

4.1 Initialization

In the initialization stage, we use three primary vision modules: Motion analysis, the
camera model (based on calibration information), and face detection.

Motion History: First, independently for each camera view, motion history is estimated
to rapidly determine where movement has occurred. The utilized algorithm is based on
work by Davis and Bobick [16]. Obtaining a foreground silhouette is achieved through
subtraction between two consecutive frames instead of background subtraction. As the
person moves, the most recent foreground silhouette is copied as the highest value in
the motion history image. The result is called the “motion history image” (MHI). MHI
pixel values that fall below that threshold are set to zero. An example of the algorithm
applied to two camera views is depicted in Fig. 4(a).
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(a)

(b)

(c)

Fig. 4. (a) Motion history image (MHI) examples in two camera views; motion objects are seg-
mented as foreground (white pixels). (b) Multiview face detection result when the detectors are
applied locally around the foreground region. (c) Local multiview face detection in the tracking
stage: Faces are detected within windows around the tracking results

Multi View Face Detection: Due to the size of the room, the resolution of the presen-
ter’s face is quite small in most of the CHIL data considered (typically, around 20×20
pixels). Robust face detection becomes difficult for such low resolutions, and as a result,
the face detector threshold is adjusted to low values in order to keep high detection rate.
This of course increases the false alarm rate. To deal with the problem, the multiview
face detector is only applied to the foreground region, where motion occurred. Example
detection results are depicted in Fig. 4(b). The detection results at each view can then
be used to verify whether the detected faces belong to the same person. In particular,
our system uses two trained face detectors: One for frontal view and the other for the
left side view, since the right side face detector can be easily obtained by mirroring the
left side one.
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Camera Model: Recording images using a camera is equivalent to mapping three-
dimensional object space points to image points in the film plane. For digitization, this
recorded image will be projected again to the image in the projection plane. For simplic-
ity, it is possible to directly relate the projected image and the object by a ray through
the projection center.

In our system, given the results of face detection, rays are created by connecting
the projection center with the head center at each camera view. The inter-ray distance
is subsequently calculated. If the detection results are correct in both views, then they
belong to the same person, and the inter-ray distance should be small; otherwise, the
distance should be larger than a threshold, and the detection result erroneous. Based on
this assumption, one can verify the detection results of the previous stage.

4.2 Tracking

Following the initialization component and the successful location of the presenter’s
face, the algorithm switches into its tracking mode. A color-based face model is first
created of the detected face region for tracking in each of the two camera views. In this
paper, the HSV color space is used for this purpose. In particular, the face model is
created by the one-dimensional histogram of the H component in the HSV color space.
The mean shift iteration is subsequently applied in the two view images separately to
find the best target candidate.

4.3 Decision to Reinitialize

In our system, the re-initialization decision is based on local face detection and utilizes
the camera model. In more detail, at each frame, a multiview face detector is applied
around the tracking result to determine whether there is a face object in the local region,
as shown in Fig. 4(c) (in our system, this is a 80×80 pixel region). If a face could not
be detected in the local region for several frames, a re-initialization decision is taken.
Similarly, if the inter-ray distance of the two-camera rays is larger than a predetermined
threshold, this indicates that the two tracked results are inconsistent, hence prompting
re-initialization. In our system, such decision is taken every 5 to 10 frames.

4.4 System Specifics

The resulting algorithm runs at approximately 5 frames per second on a Pentium four,
2.8 GHz desktop, with 512 MBytes of memory. Nevertheless, the current implemen-
tation is not optimal, and we believe that the algorithm speed can be substantially im-
proved.

As already mentioned, the algorithm operates using two camera views, but of course
can be readily extended to accommodate more camera inputs. For the CHIL data, it
uses inputs from the cam1+cam2 or the cam3+cam4 cameras, depending on which set
contains higher percentage of frontal faces, as determined on a development data set
(see Section 6).
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Fig. 5. Typical operation of the proposed multicamera face detection and tracking system. De-
picted in left column: Frame 1: Motion analysis. Frame 5: Tracking initialization. Frame 283:
Continued tracking. Right column: Frame 324: Lost tracking detected. Frame 331: Foreground
segmented by motion analysis. Frame 334: Tracking re-initialization

An example of the tracking algorithm applied on the CHIL data is depicted in Fig. 5:
In frame 5, motion analysis is applied and the foreground object is segmented. The pre-
senter’s face is located by the multiview face detector, and the detection result is verified
by the camera model. Subsequently, the face color model is constructed in the detected
face region. In the next hundreds of frames, color-based mean shift tracking success-
fully locates the presenter’s face in the two camera views. However, by frame 324, the
tracking has failed. Therefore, the system returns to its initialization component, and at
frame 334 re-emerges in the tracking mode, after successfully applying re-initialization.

5 A Background Subtraction Tracker

For comparison purposes, we briefly present an alternative head tracking system, based
on the IBM “PeopleVision” system [9], properly modified for use on the CHIL data.
The system uses background subtraction based object detection, that utilizes a multiple
Gaussian color model at each pixel, and object tracking based on the tracking method
described in [20].

The system is first applied on each of the four camera views independently. At each
frame, the 2D tracker is applied, and the resulting 2D probabilistic models are used to
determine the top of the presenter’s head. These 2D object points are then considered
as hypotheses of the presenter’s head top in the 3D space, based on camera calibration
information and a minimum threshold for inter-ray distances between all candidate pairs
in the four views. The best resulting 3D candidates at each frame are then considered to
obtain the “optimal” temporal sequence / track of the presenter’s head, using a Viterbi
decoding approach.
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6 Experiments on the CHIL Corpus

For our experiments, we use the CHIL seminar database collected at the University of
Karlsruhe (UKA). There are a total of 12 video sequences of speakers holding seminars
in front of audiences inside the UKA smart room, with the first 7 seminars collected
in 2003 (referred to as the Sem03 data), and the remaining 5 recorded in 2004 (Sem04
data). For every seminar, segments are allocated to the development and the test sets,
each containing approximately 8,000 frames for each of the four available camera views
per seminar. Ground truth labels of the 2D face center coordinates (a point of center of
the head) in individual camera images are provided every 10 frames, but only when
faces are visible (i.e., when the nose is visible). For the 2004 seminars, a bounding box
of each visible face is also provided.

For multiview face detection, and as mentioned in Section 4, two face detectors are
trained: One for the frontal view and the other for the left side view (the right side face
detector is obtained by mirroring the latter). A number of frontal and left-side view
face images are cropped from selected images in the development set for this purpose.
In addition, non-face training samples are cropped from an image database that does
not include faces. The two face detectors are trained using the FloatBoost approach
described in Section 2. For the frontal face detector, a cascade structure of 15 layers
and 576 features is obtained, trained on 1606 annotated images. For the left side view,
the cascade structure consists of 30 layers and 4330 features, trained on 1542 annotated
images.

The face detection accuracy of the combined detection and tracking scheme is de-
picted in Table 1. Note, that in order to obtain face detection estimates at the two non-
used camera views, the face detection step is also applied to them around the 2D camera
view point that corresponds to the 3D estimate of the presenter’s head. Notice that the
face detection accuracy is defined as the percentage of frames that contain detected
faces leading to errors between the face and the label centers less than half of the la-
beled face size. This is readily available for the labeled Sem04 data, but for the Sem03
data it is set to a default value of 30 pixels.

Table 1. Face detection accuracy of the proposed algorithm on the CHIL seminar data

Data Sem03 Sem04

Face detection accuracy 76.16% 51.21%

The proposed algorithm also returns the 3D location of presenter’s head based on the
estimated 2D locations in the two calibrated cameras, using triangulation. The resulting
estimates are compared to the ground truth, that is available every 10 frames (66 msec),
for the cases where the presenter’s head is visible by at least two cameras (i.e., has been
labeled at two or more camera views, and thus can be obtained through triangulation).
Four metrics are depicted in Table 2 for evaluating the performance of the system:

3D error: Mean Euclidean 3D distance in millimeters between the estimated and the
ground truth position of the head center in 3D coordinates. In addition, “% err < 300”
is the percentage of time instants, where the 3D error is smaller than 300 mm.
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Table 2. Head location performance by the proposed algorithm versus the background subtraction
system (BGS) of IBM “PeopleVision”, using the metrics discussed in Section 6

Data Sem03 Sem04

Method Proposed BGS Proposed BGS

3D error (mm) 253.9 278.4 467.4 480.3

3D err < 300 84.6% 81.2% 78.9% 47.7%

2D err (mm) 228.3 204.7 441.1 436.9

2D err < 300 85.3% 84.1% 80.7% 57.1%

2D error: Mean of Euclidean 2D distance in millimeters between the projection on
the smart room floor of the estimated 3D head center and that of the 2D ground truth.
Furthermore, “% err < 300” is the percentage of time instants, where the 2D error is
smaller than 300 mm.

In addition to the proposed system, the performance of the modified background
subtraction based system (BGS) developed from the IBM “PeopleVision” system is also
depicted. As it becomes clear, the two approaches achieve similar results on the CHIL
seminar database test sets. Notably, the performance on the Sem04 dataset is worse.
This is partially due to the more challenging nature of this set in terms of lighting and
motion. For example, when the presenter moves in or outside the area near the screen,
the face region skin color changes abruptly due to the projector illumination on the
presenter’s face. In this case, the proposed algorithm fails, due to the use of color based
mean shift tracking and has to “wait” for the decision to re-initialize tracking with multi-
view face detection. An additional reason for the poor performance of the proposed
system on the Sem04 set is that, due to lack of time, the multiview face detectors have
only been trained on Sem03 data. Nevertheless, the proposed system is slightly more
consistent than the BGS approach on the Sem04 set, as it achieves a higher percentage
of instants where the tracking error is less than 300 mm.

7 Summary

In this paper, we proposed a novel system for joint face detection and head tracking
in camera views and the three-dimensional space using multicamera input. The system
combines the strengths of FloatBoost multiview face detection and mean shift tracking,
with camera calibration information that is used to initialize and verify the returned
results based on two camera views. We applied the algorithm on the CHIL seminar
database, and we compared the system performance to that of a background subtraction
based tracker. In future work, we will extend the system to deal with four cameras,
and improve tracking by seeking additional cues such as joint contour and appearance
information.
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Abstract. This paper describes the development of a real-time percep-
tive user interface. Two cameras are used to detect a user’s head, eyes,
hand, fingers and gestures. These cues are interpreted to control a user
interface on a large screen. The result is a fully functional integrated
system that processes roughly 7.5 frames per second on a Pentium IV
system. The calibration of this setup is carried out through a few sim-
ple and intuitive routines, making the system adaptive and accessible to
non-expert users. The minimal hardware requirements are two web-cams
and a computer. The paper will describe how the user is observed (head,
eye, hand and finger detection, gesture recognition), the 3D geometry
involved, and the calibration steps necessary to set up the system.

1 Introduction

With the abundance of multimedia information and the increasing ubiquity of
computing power, the number of applications for perceptive user interfaces is
growing. Examples are a security control room, browsing a multimedia database
as seen in the motion picture Minority Report, controlling a home entertainment
system, the gaming industry... Vision allows us to detect a number of interesting
cues like location, identity, a user asking for attention, expression, emotion, a
user pointing at objects or a user gesturing. This paper summarizes the devel-
opment of a perceptive user interface that allows a user to point at objects and
manipulate them with hand gestures.

There are a few existing non-commercial systems with similar objectives.
One example is PFinder, developed by C. Wren, A. Azarbayejani and A. Pent-
land at the Massachusetts Institute of Technology (MIT), USA [1]. This system
analyzes color and shape to detect the head and the hands of the user. A body
contour is extracted by comparing the current image with a stored background
image. Subsequently a number of coordinates in the image are selected with high
probability of being a head or a hand. The method is very fast, but an interface
as proposed in this paper requires a more detailed human model. Other systems
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Fig. 1. User pointing at a point on screen

attempt to build a more articulated and dynamic body model, e.g. the system
developed by R. Plänkers and P. Fua at the École Polytechnique Fédérale de
Lausanne EPFL, Switzerland [2]. They built a body model from soft objects.
The model is iteratively fit to the camera images. This approach yields a high
level of detail, but is too complex for a real-time implementation.

In this paper we describe a system that is both fast enough to implement a
real-time perceptive user interface, and sufficiently detailed to allow a user to
point at objects on a screen and to recognize the user’s hand gestures. The rest of
this paper is organized as follows. First the user’s head and hands are extracted
through skin color analysis (section 2.1). Next, the user’s fingers and eyes are
located and the user’s gestures are processed (sections 2.2-2.4). If the user is
pointing, an imaginary line is constructed between the user’s eyes and his finger
tip (figure 1) and intersected with the screen plane (section 3). The system
is designed to be robust and adaptive to new environments, which requires a
number of calibration steps (section 4). Finally, we describe the demonstration
GUI and the integrated setup (section 5). Considering the real-time nature of
the system, all algorithms need to be selected with speed of execution in mind.

2 Observing the User

2.1 Skin Color Analysis

This section addresses the detection of skin pixels in a camera image. Skin and
non-skin pixels are modeled as distributions in the rg-color space. Based on these
distributions a MAP rule is derived for the probability of a color pixel being skin
or not. The results are further improved in a post-processing step.

First the image is converted to the rg-color space, which is an intensity
normalized color space (r = R/(R + G + B) and g = G/(R + G + B)). The
benefits of this transformation are a lighting invariant, compact representation
of skin colors and a speedy computation. To model skin and non-skin pixels in
this color space, a gaussian mixture model (GMM) is implemented similar to [3].
The result are two distributions, p(c|skin) and p(c|non-skin). The model for
the probability that a given color is skin is constructed with Bayes’ rule,

P (skin|c) =
p(c|skin)

p(c|skin) + p(c|non-skin)
(1)
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(a) (b)

Fig. 2. (a) Result of skin color analysis without post-processing. (b) Result of skin
color analysis after post-processing

where the prior P (skin) is discarded for the time being. Figure 2a shows the
result of this detection model, after thresholding. To speed up the detection, the
results of (1) are computed offline and are stored in a lookup table (LUT). To
further speed up the detection, it is applied to a decimated image first, and then
detailed detection is applied only to a region of interest (ROI).

The resulting detection still suffers from a lot of noise and holes. To improve
the quality, we take another look at the prior that was discarded in (1). It is ob-
vious that a pixel has a higher probability of being a skin pixel if it is surrounded
by skin pixels. This information can be included in the prior. [4] explains how
such a prior can be modeled with median filtering, requiring very few CPU cy-
cles. Next, a connected components analysis is applied to select only sufficiently
large objects (hand, face). Through background segmentation [5] objects from
the background can be discarded. The result of these post-processing steps is
shown in figure (2b). Note the level of detail of the hand segmentation. This
quality will be very important for the robustness of the finger detection and
gesture recognition in the following subsections.

Our current implementation uses a fast area-based measure to distinguish
between head and hand objects (figure 2b). Though functional, future revisions
might be improved with a basic face detector and a more detailed arm model.

2.2 Finger Detection

This subsection will describe the detection of fingers on the detected hand, and
the localization of the fingertip of the pointing finger. With speed in mind a
simple yet very effective technique from [6] was implemented. The first step is to
perform erosion on the hand object until all fingers are removed, and to dilate
it back to get a good approximation of the palm of the hand. Subtracting this
object from the original observed object leaves only the fingers (figure 3). Using
connected component analysis we can remove noise and count the number of
observed fingers. For a hand with up to three extended fingers the accuracy of
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(a) detection (b) erosion (c) dilation (d) subtract

Fig. 3. Finger detection

the method exceeds 95%. This means the method is robust enough to decide
whether the user is pointing at an object (one finger) or gesturing (zero or
multiple fingers). If exactly one finger is counted, the finger tip will be located
as the furthest point from the gravity center of the palm of the hand.

2.3 Gesture Recognition

If zero or multiple fingers are detected, gesture recognition is used to understand
which action the user is trying to invoke. The starting point is a hand object as
segmented in figure 3a. The object is normalized for rotation and size through
eigen analysis. Next, the outline shape is extracted with a 3× 3 edge filter. The
similarity between two edge maps is measured by the Hausdorff-distance [7].

In our case the gesture recognition subsystem can use two camera images.
Therefore we can train two edge maps with each gesture, one from each camera.
During detection the sum of both Hausdorff-distances is minimized to achieve an
effective stereo detection. If there is doubt in one camera image, this ambiguity
can be resolved through the second one. The accuracy depends entirely on the
chosen gestures. In our experiments we achieved 95% accuracy distinguishing 4
gestures (pointing, scissors, gun and open hand).

2.4 Eye Localization

Localization of the eyes consists of two steps. First the results of the skin color
analysis are used to estimate a region of interest (ROI). Using eigen analysis an
ellipse is fit to the detected face object. Given this ellipse, a small rectangle can
be cut out from the upper part of the face and normalized (figure 4). The second
step is to perform a precise detection only on this region. To detect the eyes a
number of features are extracted and based on each feature a pseudo-probability
is calculated. A combination of these probabilities leads to a more robust detec-
tion (figure 4). The first probability is constructed based on luminance, as the
eyes (pupils) are distinctly darker spots in the image,

pL(p) = exp
(−I(p)

s

)
(2)

where I(p) is the luminance of point p and s is a scaling factor. Experiments
under various lighting conditions and using different cameras have shown 100 to
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(a) (b) (c) (d) (e) (f)

Fig. 4. (a) region of interest, (b) probability based on luminance (pL), (c) probability
based on color (pS), (d) probability based on integrated luminance (pI), (e) product
of all probabilities, (f) detected eye components

be an appropriate value for s. The second probability is based on color, as the
eyes are distinctly not skin-colored,

pS(p) = p(non-skin|cp) (3)

Finally a third probability can be extracted from the horizontally integrated
luminance. Both the eyes and the shadow region around them present a much
area region inside the ROI. These differences can be enhanced through horizontal
integration,

SI(p) =
∫ +w

−w

I(t, y) dt (4)

where pI is obtained as a normalized version of SI . To improve the detection an
additional probability pR is introduced to eliminate non-skin colored objects at
the sides of the ROI (e.g. hairs, ears). Combining the probabilities yields,

p(p) = pL(p) · pS(p) · pI(p) · pR(p) (5)

Finally, the eyes are located using connected component analysis, looking for
the two components with highest probability. Unlikely detections are discarded
after two geometric tests. The distance between the eyes needs to be likely with
respect to the size of the face, and the eyes should be horizontal with respect
to the rotation of the face. The method’s accuracy exceeds 95% during frontal
observation. It remains robust with respect to head rotations around the vertical
axis until approximately 30◦ of rotation.

3 3D Extraction

The goal is to figure out which point on the screen the user is pointing at, which
should be robust and unambiguous. We chose to draw an imaginary line from the
user’s eyes, through his fingertip, onto the screen (figure 1). In what follows the
3D coordinates of the eyes and fingertip are written as Xo and Xv respectively.
The pointing direction can thus be written as Xv − Xo. The camera matrices
P and P ′ and the screen plane U are obtained in a calibration step which is
described in section 4.

First, we want to translate the couples of 2D coordinates in the camera
images into 3D coordinates in space. The relation between a 2D point x and
corresponding 3D point X in homogeneous coordinates is [8]:

x = PX (6)
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Applying (6) to both cameras (P and P ′ respectively) we can construct a ho-
mogeneous system of four equations,⎡

⎢⎢⎣
wP1 − xP3

wP1 − yP2

w′P ′
1 − x′P ′

3

w′P ′
1 − y′P ′

2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

X
Y
Z
W

⎤
⎥⎥⎦ = 0 (7)

which we can use to calculate the points Xo and Xv. Finally, the intersection of
the line through these two points and the screen plane needs to be calculated.
The equation of this line is

L ↔ X = Xo + k(Xv − Xo) (8)

Together with the screen plane (11) we can find⎡
⎣k

x
y

⎤
⎦ =

[
Xv − Xo −Ux −Uy

]−1 (U0 − Xo) (9)

This equation can be used to compute the 2D pixel coordinate (x, y) on screen
directly from the original 2D eye and finger coordinates.

4 Calibration

A number of calibration steps are necessary to get the system running. These
steps are designed to be simple and fully automatic, as described in the following
subsections.

4.1 Camera Calibration

The internal camera parameters can be assumed to be constant for fixed camera
settings. The parameters are calibrated once (off line) using a semi-automatic
calibration program with calibration object [9, 10]. The internal camera pa-
rameters are stored in the calibration matrices K and K ′ for both cameras re-
spectively. The calibration of the external camera parameters (position, viewing
direction) should be easy enough to be performed by the end user. To achieve
this the calibration only requires the user to point his finger randomly in front
of the cameras. The calibration data is recorded by registering correspondences
in both camera images as the system tracks the user’s fingertip. The relation
between a set of correspondences x en x′ and the camera pair’s fundamental
matrix F in homogeneous coordinates can be written as

x′tFx = 0 (10)

F can be determined using several correspondences. A robust method to estimate
F is the Ransac method [11]. The camera matrices P and P ′ can then be derived
from F via the essential matrix E and the calibration matrices K and K ′ as
described in [12].
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4.2 Screen Calibration

To calibrate the position of the screen, the system will display a sequence of
points on the screen one by one, and ask the user to point his finger at them
as they appear. Note that this procedure can also be used for the calibration in
section 4.1. The 2D coordinates of the displayed points are denoted as (λi, μi).
The 3D positions of the corresponding finger and eye positions are denoted as
Xv

i and Xo
i respectively. The screen plane α is described by,

α ↔ X = U0 + x(Ux) + y(Uy) (11)

where U0 is the upper left corner of the screen and Ux and Uy are the horizontal
and vertical axes of the screen. The line projected through the 3D finger and eye
coordinates is denoted as Li,

Li ↔ AiX + bi = 0 (12)

The rows of Ai form a basis for the orthogonal complement of the subspaces
reproduced by the vector Xv

i −Xo
i . If an orthonormal basis is chosen, the following

equation describes the perpendicular distance of any X to Li,

d2(X, Li) = (AiX + bi)t(AiX + bi) (13)

Every projected point (λi, μi) in the screen plane corresponds with a line Li. In
order for this point to be equal to the point the user is pointing at, Li should
intersect the screen plane α in that point. Thus, for every i,

Ai (U0 + λi(Ux) + μi(Uy)) + bi = 0 (14)

Given a number of correspondences (λi, μi) ↔ Li, it is possible to determine
α. In order to deal with unavoidable measurement errors, a least squares solu-
tion will be computed based on N correspondences. Using (13) we look for the
plane α that puts the screen points u(λi, μi) ∈ α as closely as possible to their
corresponding Li. ∑

i

(Aiu(λi, μi) + bi)t(Aiu(λi, μi) + bi) (15)

which can be rewritten,

∑
i

(AiΛiu − bi)
t (AiΛiu − bi) where u =

⎡
⎣U0

Ux

Uy

⎤
⎦ and Λi =

[
I3 λiI3 μiI3

]
(16)

Minimization with respect to u yields,∑
i

(AiΛi)t(AiΛi)︸ ︷︷ ︸
S

u +
∑

i

(AiΛi)tbi︸ ︷︷ ︸
g

= 0 ⇔ Su = −g (17)

The solution to this equation is not unique. The screen can still be shifted away
from the user. This leaves one free parameter for the screen plane. As we only
need to determine the 2D screen coordinates based on the 3D finger and eye
coordinates (9), this free parameter is irrelevant and can be discarded.
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4.3 Color Calibration

The quality of the skin color analysis in section 2.1 depends a great deal on
the white balance parameters of the cameras and the chosen threshold for (1).
To improve the robustness and usability of the system we have developed an
automatic system to adapt these parameters to the given camera and lighting
conditions. We present a simple setup where the system imitates a mirror with
a small rectangle overlaid in the middle of the picture. The user needs to sit
and position his head exactly inside this rectangle before calibration begins. The
following measure of skin color analysis quality is proposed,

q = n+ − n− (18)

where n+ denotes the number correctly classified pixels, the number of skin
pixels inside the rectangle and the number of non-skin pixels outside, and n−
the number of skin pixels detected outside of the rectangle. The white balance
is varied until a maximum is found for q. Given this white balance, the same
quality measure is used to determine the optimal threshold. In most cases the
color calibration will yield a natural white balance and a neutral threshold. Only
with very strange backgrounds or lighting conditions the calibration will result
in a compensating white balance.

5 Integrated System

5.1 Graphical User Interface

Until now we have described methods to detect skin, eyes, hands, fingers and
gestures. Based on the coordinates of the eyes and fingertip we can determine
which point on the screen the user is pointing at. Now it’s important to illus-
trate the functionality in a clear and useful interface (figure 5). The goal is to
build an environment where the user can point at objects (icons) to highlight
them, grab them, drag them and activate them. Each icon has three states: nor-
mal, highlighted and grabbed. When the icons appear on the screen they are
in the normal state. When the user points at an icon it will grow and become
highlighted. The user can now gesture to grab the icon. The icon will go to the
grabbed state and its highlight will change color. Finally the user can gesture to
activate the icon. In our implementation activating an icon opens a hyperlink to
a new interface with new icons. All gestures are trained during a training pro-
cedure in advance and they can be chosen freely by the user. The only gesture
that’s fixed is the pointing gesture, where the user only extends one finger. The
icons, their location on screen and their hyperlinks are defined in an XML file.

5.2 Integrated Setup

Our test setup consists of a large screen (3 m by 2 m) with two Sony DFW-VL500
cameras placed alongside it. The cameras are positioned near the border of the
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Fig. 5. Using the interface

screen, in the middle of the vertical sides. The cameras are pointed directly at the
user. The cameras could in fact be positioned anywhere, as long as the eyes and
the hands are visible inside the picture. Both cameras continuously grab images.
These images are passed through the skin color analysis. The grabbed images
and their binary skin images are fed to the subsystems described in section 2.
Depending on the state (pointing or gesturing) the system applies finger tip
detection or gesture recognition. The gesture recognition system analyzes the
stereo images and returns the ID of the recognized gesture and the hand’s center
of gravity. The eye detector locates the coordinates of both eyes and returns the
middle point. Based on two coordinates (either fingertip and eyes, or hand center
and eyes) an imaginary 3D line is constructed. The intersection of this line with
the 3D screen plane gives us the 2D coordinate on the screen. The interface
processes this 2D screen coordinate along with the ID of the recognized gesture.
If the user points at an icon this icon will be highlighted. The gestures are
interpreted to perform actions on the highlighted icon.

The result of the integrated setup is illustrated in figure 5. The figure shows
a user actively demoing the user interface. Our system is implemented in C++
and achieves approximately 7.5 frames per second on a Pentium IV. The average
pixel deviation is 15 pixels on a resolution of 1024x768, which boils down to a
pixel deviation of about 2%. The icons in our system are 168x168 pixels in size,
comfortably bigger than the pixel error.

6 Conclusion

We have selected several state-of-the-art techniques, keeping the speed of execu-
tion in mind. The skin color analysis was improved drastically with a fast post
processing step. We implemented a robust stereo gesture recognition system.
A fast and efficient eye detection system was implemented. We proposed a set
of simple and intuitive calibration routines to calibrate the cameras, the screen
and the skin color analysis, making the system adaptive and accessible to non-
expert users. Each component was tested for quality and robustness by setting a
ground truth and comparing the detection results. As described in the previous
sections each component exceeded a 95% detection accuracy in our experiments.
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Finally we combined all these components to build a working prototype. Several
movies demonstrating the work presented in this paper can be downloaded at
http://www.esat.kuleuven.ac.be/∼mvandenb. The functionality of the vari-
ous subsystems from section 2 are demonstrated in these movies. The final movie
shows the working prototype and is a clear proof of concept of our perceptive
user interface.
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Abstract. The appeal of computer games may be enhanced by vision-
based user inputs. The high speed and low cost requirements for near-
term, mass-market game applications make system design challenging.
In this paper we propose a vision based 3D racing car game controlling
method, which analyzes two fists positions of the player in video stream
from the camera to get the direction commands of the racing car.
This paper especially focuses on the robust and real-time Bayesian net-
work (BN) based multi-cue fusion fist tracking method. Firstly, a new
strategy, which employs the latest work in face recognition, is used to
create accurate color model of the fist automatically. Secondly, color cue
and motion cue are used to generate the possible position of the fist.
Then, the posterior probability of each possible position is evaluated by
BN, which fuses color cue and appearance cue. Finally, the fist position
is approximated by the hypothesis that maximizes a posterior. Based
on the proposed control system, a racing car game, “Simulation Drive”,
has been developed by our group. Through the game an entirely new
experience can be obtained by the player.

1 Introduction

Recent advances in various signal-processing technologies, coupled with an ex-
plosion in the available computing power, have given rise to a number of novel
human computer interface (HCI) modalities: speech, vision-based gesture recog-
nition, etc.

Up to now many vision based interfaces (VBI) have been proposed. But the
systems [1] [2], which are designed for game control, are very few. For improving
the robust of algorithm most video recognition algorithms are time-consuming,
it isn’t fit for game control, which requires fast response.

How to find a robust and real time fist tracking algorithm is the key problem
of our vision based game control method. Currently, many researches have been
done on this area. However tracking objects efficiently and robustly in complex
environment is still a challenging issue in computer vision. Particle filter [3]
[4] and mean shift[5] [6]are two successful approaches taken in the pursuit of
robust tracking. Particle filters, to apply a recursive Bayesian filter based on
propagation of sample set over time, maintain multiple hypotheses at the same
time and use a stochastic motion model to predict the position of the object.
Maintaining multiple hypotheses allows the tracker to handle clutters in the

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 70–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Vision Based Game Control Method 71

background, and recover from failure or temporary distraction. However, there
are high computational demands in the approach, and this is the bottleneck
to apply particle filtering in real time systems. On the other hand, mean shift
explores the local energy landscape, using only a single hypothesis. This approach
is computational effective, but it is susceptible to converge to local maximum.

In this paper we propose a real time and robust fist tracking algorithm. Com-
paring with conventional algorithms, our algorithm has three advantages. First,
the proposed algorithm uses more hypotheses to overcome the shortcoming of
local optimal of the mean shift algorithm. Second, in order to reduce the compu-
tation, motion cue and color cue are used to reduce the number of hypotheses.
Third, BN is used to fuse the appearance cue and color cue, which makes the
tracking results more robust.

Based on the proposed algorithm, we design a vision based racing car game
control system, which analyzes two fists positions of the player in video stream
from the camera to get the direction commands of the racing car. In the tradi-
tional keyboard control approach, driving car is an integral process. That is to
say the larger angle the player wants to turn, the longer time the player needs
to push the key down. In our game, if the player wants to change the direction
at a large scale, what he should do is just pose his fists at a large angle. That is
to say, for a normal camera this process just needs 33 millisecond. Experimental
results show that the frame rate of a normal camera, which is about 30 frames
per second, is enough for controlling the car.

The remainder of this paper is organized as follows: Section 2 describes the
novel fist tracking algorithm. section 3 describe our 3D game control system.
Some experiments are shown in section 4.

2 BN Based Fist Tracking Method

This section explains how to track the player’s fists. It’s very important for our
racing car control system to efficiently and robustly tracking objects in complex
environment. In other words, the response time of the vision interface should be
less than a video frame time. And at the same time, the recognition algorithm
should be more robust. The proposed tracking algorithm includes three steps.
First, some hypotheses about the fist’s position are generated based on the mo-
tion cue and color cue. In this way, the number of the hypotheses is very limited.
Then all the hypotheses are evaluated by the BN, which fuses appearance cue
and color cue. Finally, the fist position is approximated by the hypothesis that
maximizes a posterior.

2.1 Hypothesis Generation

Color Cue. Skin is arguably the most widely used primitive in human image
processing research, with applications ranging from face detection and person
tracking to pornography filtering. Color is the most obvious feature of the fist.
It indicates the possible position of the fist. In order to use color cue of the
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fist ,a probability distribution image of the desired color must be created firstly.
Many algorithms employ a manual process to extract color information in their
initialization stage, such as CAMSHIFT. By this way an accurate skin color
model can be obtained. But semi-automation is the main shortcoming of these
algorithms. For achieving automation, the most popular method is to learn the
skin color distribution from a large number of training samples. However, due
to the different illumination and different camera lens, this color distribution is
not always exact in real condition.

In this paper, we proposed a novel scheme to acquire the color distribution
of the fist. Generally speaking, the skin color of hand and face, which belong to
the same person, are the same or similar. For face detection, there are many
successful algorithms. So we gain the skin distribution from the face of the
player instead of the fist. In our scheme, three steps are needed for creating
color model. The first stage is face detection. In this stage, our Haar-Sobel-like
boosting [7] algorithm is used. Haar and sobel features are used as feature space,
and GentleBoost is used to select simple classifiers. Haar features are used to
train the first fifteen stages. And then sobel features are used to train the rest
fourteen stages. The second stage is face alignment. At this stage, active shape
model (ASM) [8] is used. The last stage is creating color model. The hues derived
from the pixels of the face region are sampled and binned into an 1D histogram,
which is used as the color model of the fist. Through this histogram, the input
image from the camera can be convert to a probability image of the fist.

Motion Cue. In order to deal with the skin-colored objects in the background,
motion cue is used for our algorithm. We differentiate the current frame with
the previous frame to generate the difference image using the motion analysis
method in [9]. The method is to compute the absolute value of the differences
in the neighborhood surrounding each pixel. When the accumulated difference
is above a predetermined threshold, the pixel is assigned to the moving region.

Since we are interested in the motion of skin-colored regions, the logical AND
operator is applied between the color probability distribution image and the
difference image. And as a result the probability distribution image is obtained.

Hypothesis Generation. Suppose human hand is represented by a rectangle
window, the possible position of the fist is gained as follows:

1, we sample the image from 320x240 to 160x120.
2, a subwindow x, y, w, h, where x and y are the left-top coordinate, w and h

are the size of the rectangle, moves on the probability distribution image. And
the sum of the pixels in subwindow is calculated. In our experiment, the w is 28
and the h is 35.

3, if the sum is below a certain threshold T , which is in a direct ratio to w×h,
it returns to step 2. And if the sum is above the threshold, the CAMSHIFT [10]
is applied to getting the local maximum and the local color region size. And the
center point of CAMSHIFT region is saved.

4, The pixels in CAMSHIFT region are set to zero. And it goes to step 2.
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Based on these saved points, multiple hypotheses of the position and size
of the fist are generated. For each saved point (x, y), four rectangle regions are
taken out as four hypotheses. These regions have the same center (x, y), but
differ in size. So the total number of the hypotheses is Num× 4, where Num is
the number of saved point.

2.2 Inference in the Bayesian Network

In this section, we mainly discuss how to compute the posterior probability of
each hypotheses.

For robust tracking, we must eliminate the effect of other skin-color objects,
which are also in motion, such as face. So besides skin-color feature more fea-
tures should be taken into consideration. Fist appearance is the most significative
feature and it can be used for differentiating fist from other objects. In our algo-
rithm, two main features, color feature and appearance feature, are employed.
Bayesian network [12] is useful when we are trying to fuse more cue for tracking
fist. Thus the posterior probability of fist region given observations of the other
variables can be computed as follows:

P (Xk|C, A, Xk−1, Xk−2) (1)

where C denotes color cue, A denotes appearance cue, Xk−1 and Xk−2 are the
previous object state, Xk is the current object state.

The Bayesian network is shown in Fig.1.

Fig. 1. The Bayesian network

By using conditional independence relationships we can get

P (Xk|C, A, Xk−1, Xk−2)
∝ P (Xk, C, A, Xk−1, Xk−2)
∝ P (C|Xk)P (A|Xk)P (Xk|Xk−1, Xk−2)

(2)

Prior Model. The prior model P (Xk−1, Xk−2) is derived from the dynamics
of object motion, which is modelled as a simple second order autoregressive
process(ARP).

Xk − Xk−1 = Xk−1 − Xk−2 + Wk (3)

where Wk is a zero-mean Gaussian stochastic component.
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The parameters of ARP model are learned from a set of pre-labeled training
sequences.

Computation of the Color Marginal Likelihood. We define the color like-
lihood as follows:

P (C|X) =
1
nc

∑
i,j

Pc(i, j) (4)

where nc is the scale of the likelihood, and Pc(i, j) is the pixel in color cue image.

Computation of the Appearance Marginal Likelihood. Based on assump-
tion of a Gaussian distribution, the probability of input pattern A, which belongs
to fist class X can be modelled by a multidimensional Gaussian probability den-
sity function:

P (A|X) =
exp[− 1

2 (A − μ)T Σ−1(A − μ)]
(2π)N/2|Σ|1/2

(5)

where μ is the mean vector of class X , Σ is the covariance matrix of class X .
By using PCA to reduce the dimension of X , the P (A|X) is approximately

estimated by equation (6), more detail about equation (6) can be found in [11].

P̂ (A|X) = exp

[
−1

2

M∑
i=1

y2
i

λi

]
exp

[
− ε2(x)

2ρ

]
(6)

where P̂ (A|X) is the estimation value of P (A|X), ε2(x) is the residual error, λi is
eigenvalue of Σ, M is the dimensional of principal subspace, N is the dimension
of total subspace.

In our experiment, the appearance parameters μ and Σ are learned from
more than 5000 labelled images, which are collected from one hundred persons
with three kinds of illumination. Some samples are shown in the Fig.2.

Fig. 2. Some samples used for training

3 Racing Car Game Control System

Based on the proposed algorithm, we design a vision based racing car game con-
trol system, as show in Fig. 3. It is made up of two parts: vision based interface,
which is used for car’s direction controlling, and voice based interface,which is
used for car’s status controlling (such as startup, acceleration or deceleration).
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Fig. 3. Game control system

For the purpose of this paper, we mainly focus on the vision based interface
and the fist tracking algorithm. Vision based interface is made up of three mod-
ules: snapshot module, tracking module and command mapping module. When
a new player enters into the game, a snapshot of the player is cropped from
the video frame by snapshot module automatically. And this snapshot is used
as an individual player ID in our racing car game. Then tracking module starts
tracking the player’s fists. Finally the tracking results will be changed into game
command by command mapping module to control the game. In this way the
player can control the car’s direction by his fists.

3.1 Snapshot Module

In order to add more individual to our system, we design a snapshot module,
which can create an individual ID of the player. At the same time, another
purpose of this module is to create an accurate skin color model, which will be
used by the proposed fist tracking, from the player’s face without an initializing
by the player. In this module the player’s face can be got and the player’s skin
color model can be created. More detail about the algorithm of this module can
be found in section 2.1.

3.2 Tracking Module

Tracking module is the core of the VBI, and it is used to analyze the fist position
of the player. In this module the proposed fist tracking method is implemented.
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3.3 Command Mapping Module

Through tracking the fists’ position can be obtained and the steering wheel
direction can be computed as follows:

corner = atan((yr − yl)/(xr − xl)) (7)

where corner is the direction of the car, (xl, yl) is the position of the left hand
and (xr, yr) is the position of the right hand.

Smooth control is very important to well designed game, so the recognition
result can’t be used directly. A four order smooth process is applied by our
system.

Θ = ω0 × cornerk + ω1 × cornerk−1 + ω2 × cornerk−2 + ω3 × cornerk−3 (8)

where Θ is the final output control information at time k, cornerk is the recogni-
tion result at time k, cornerk−1, cornerk−2, cornerk−3 correspond to recognition
results at time k − 1, k − 2, k − 3 respectively.

In our experiment ω0 = 0.5, ω1 = 0.3, ω2 = 0.15, ω3 = 0.05.

4 Experimental Result

4.1 Algorithm Performance

In order to compare with the mean shift algorithm, two experiments are done.
In the first experiment, the color-motion based mean shift algorithm is used.
When player’s fist and face overlap, the tracker loses the fist. Some key frames
of this experiment are shown in Fig.4. And it has no chance to recover. This is
because the mean shift is a local optimal algorithm. In the second experiment,
the proposed algorithm is applied. Based on multi-hypotheses it overcomes the
local optimal. And using more cues, our algorithm becomes more robust. Some
key frames of this experiment are shown in Fig.5. All the experiments are done
on a P4 1.7G machine with 512M memory. The normal recognition speed of our
algorithm is about 29 fps.

Fig. 4. Tracking failure by color and motion based Mean Shift algorithm
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Fig. 5. Tracking by Bayesian network

4.2 3D Game Example

In the racing car game, an extra thread is created for vision based interface
and the average fps is 28. That is to say 28 direction commands can be sent to
the game and the experiment results show that these are enough for controlling
the car’s direction in real time. There are no distinct drop in game’s fps. Some
pictures of our game ,“Simulation Drive” are shown in Fig.6.

Fig. 6. Some frames of our game

5 Summarize

In this paper,a Bayesian network based fist tracking algorithm is introduced.
Comparing with particle filter, the proposed algorithm, which uses more infor-
mation to generate hypotheses, reduces significantly the number of hypotheses
needed for robust tracking. And at the same time it overcomes the shortcoming
of local optimal of the mean shift algorithm. Based on this algorithm we design
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a vision based 3D racing car game control system, which migrate the “natural”
means to the game control.
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Abstract. We present an approach for facilitating user interaction on
mobile devices, focusing on camera-enabled mobile phones. A user inter-
acts with an application by moving their device. An on-board camera is
used to capture incoming video and the scrolling direction and magnitude
are estimated using a feature-based tracking algorithm. The direction is
used as the scroll direction in the application, and the magnitude is used
to set the zoom level. The camera is treated as a pointing device and
zoom level control in applications. Our approach generates mouse events,
so any application that is mouse-driven can make use of this technique.

1 Introduction

Mobile devices currently support navigation through a joypad/direction keys or
scroll bars on touch-sensitive screens using a stylus-based pen. Although these
modes of interaction are sufficient for small sized content, more intuitive tech-
niques are required for navigating more complex data. It is difficult to use these
techniques to navigate a full-sized Web page or to select an item from dozens of
choices in a list box of messages, photos, audio files, phonebook entries or other
mobile content. On devices with larger form-factors, additional keys provide a
better user experience since keys can be dedicated to specific tasks such as page
up/down and zoom level. Smart phones cannot make use of such keys due to lim-
ited physical space. Stylus-based interaction for navigation is an alternative, but
requires two-handed interaction and has been shown to cause additional atten-
tional overhead in users [1]. Consequently, alternative interaction techniques are
desired. Other sensors could be added to mobile devices such as accelerometers
(e.g., Samsung’s SCH-S310 smartphone), but these can be difficult to integrate
into existing consumer-level devices at both the software and hardware level.
In addition, such sensors are known to have error buildup over time since some
infinitesimal acceleration is always measured.

To address these problems, we propose using the camera sensor as the input
device. Feature-based tracking of the incoming video is used to estimate both
motion direction and magnitude. The direction estimates are used for scrolling
while the magnitude of the physical movement can drive the current zoom level
in an application or be used for shake detection. This approach provides a more
natural user interaction maximizing the use of the display, minimizing atten-
tional overhead to the user, and permitting one-handed interaction. This ap-
proach does not preclude the use of a joypad, and can be used as an extension
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Fig. 1. A tracking algorithm is used to determine movement direction and magnitude.
These are then treated as mouse events by the application’s event handler, and the
user’s view is updated

of joypad-based interaction, where the joypad could be used for fine-grained se-
lection. We tested our approach on an image-browsing task in a photo browsing
application, as well as in a document viewer and in games. In informal tests,
users preferred our solution to a joypad-based navigation. Joypads and scroll
buttons are adequate for navigation of small datasets on limited sized displays,
but not for large or complex data.

2 Related Work

Mobile camera-based tracking has been researched by several groups. Rohs et
al. [2] perform tracking based on dividing incoming camera frames into blocks
and then determine how the blocks move given a set of discrete possible trans-
lations and rotations. Our algorithm is instead based on tracking individual
corner-like features observed in the entire incoming camera frames. This allows
our tracker to recognize sudden camera movements of arbitrary size, as long as
at least some of the features from the previous frame are still visible, at the
trade-off of not detecting rotations.

Augmented reality research on mobile camera-based tracking systems in-
cludes that of Möhring et al. [3], who track a color-coded 3D marker to estimate
3D camera pose, after an initial calibration step. Our work is instead focused
on new user interfaces using computed 2D motion, so we do not require mark-
ers or user calibration for tracking. Drab et al. [4] present a computationally
inexpensive tracking system, however their system has problems with repeating
textures and requires scenes with high dynamic range which ours does not. Beier
et al. [5] present a marker-less tracking algorithm, however it does not run on
mobile devices as ours does and also requires matching with known 3D models,
which we do not require.

Additional related work includes the Mosquito game available for the Siemens
SX1 mobile phone, among others that have been created since then for many
smart phone platforms. While camera motion is indeed estimated in these games
to translate sprites accordingly, it should be noted that the detected motion does
not need to be exact as the sprites are rendered on top of the video but not
attached to any feature. As such, only approximate motion is required. Since
our tracked motion needs to match the user’s physical motion exactly, a higher
degree of accuracy is required which from our testing is not present in current
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Fig. 2. Tracking algorithm and direction estimation flowchart

commercial camera motion tracking-based games. Recently [6] have created the
first Kalman-based tracker for mobile devices. Kalman tracking yields higher
quality motion estimates but has higher computational requirements and needs
a more complex implementation than in our work.

Prior work on speed-dependent automatic zooming on mobile devices has fo-
cused on performing zoom and/or panning using either additional hardware or
sensors. Igarashi and Hinckley [7] performed speed-dependent automatic zoom-
ing by creating equations based on mouse motion which determine whether to
zoom in or out. Recently, Cockburn et al. [8] have performed extensive user
studies to find empirical values for the equations relating speed and zoom levels
for mouse motion. Other pointer device based scrolling techniques include the
Alphaslider [9], the FineSlider [10] and the Popup Vernier [11]. Those works fo-
cused on how to effectively select an item from a list of a large number of items.
An extended scroll bar component that allows the user to change the scrolling
speed was used. Our approach can be used as an alternative in instances where
a pointing device is not available, such as on a mobile device.

Our work is also similar to the scroll [12], and peephole [1] displays works
and work on tilt-based interaction [13, 14]. In these works, the goal was to per-
form scrolling on mobile devices in a more intuitive fashion by using additional
sensors. Scroll-detection sensors that were used included both mechanical and
optical mouse sensors, position and orientation sensors, and ultrasonic transmit-
ters/receivers. While additional sensors were required in those works, we use only
the camera as the direction sensor instead of adding new sensors. Doing so al-
lows for regular camera-equipped smart phones to have an additional interaction
modality without modifying the phone.

Other hardware-based solutions to scrolling come from the commercial do-
main. Apple’s iPod, while not performing zooming, makes use of a touch-sensitive
scroll wheel whose scrolling speed depends on the number of songs in a play list,
to maximize display usage. On other mobile devices such as cell phones, touch
screens are commonly used to address display size limitations. Touch screens
can allow users to interact and scroll through their data more effectively than
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using buttons as the stylus can just be dragged down a scrollbar. However, touch
screens have the disadvantage of not permitting one-handed operation.

3 Camera-Based Movement Estimation

Our approach is to use the mobile phone’s onboard camera as the source of input.
The user’s physical movement of the device is captured in incoming video, which
is analyzed to determine scroll direction and magnitude. The detected direction
is sent to the event handler exactly as a corresponding mouse event, while the
magnitude is used to specify the current scroll level. Figure 1 shows an overview
of our system.

Correctly interpreting the observed motion from the camera’s incoming video
requires accurate tracking. To determine the motion direction, a feature-based
tracking algorithm is used. To determine the magnitude of the physical move-
ment, motion history images (MHI) [15] are used, which were originally used for
performing action and gesture recognition. Our tracking algorithm provides four
directions as application-level events, similar to mouse movement: up, down, left
and right, in the camera plane. The magnitude is also passed as an event, where
two states are possible: motion magnitude increasing or decreasing. The rest
of the application remains the same as the only changes are the cause of the
events passed to the event handler. This allows applications to use the camera
easily, without any knowledge of the underlying tracking algorithms or camera
hardware.

High-Level Algorithm Description: The tracking system was implemented
on the Symbian OS. The process diagram of the tracker is presented in Figure 2.
Two frames are grabbed, n and n−1. Edge detection is performed on both frames
using the Sobel filter. The thresholded absolute values of the x and y derivatives
are used as features as they peak in corner-like regions. Feature matching is
performed between frames using template matching with 15x15 search windows.
Direction voting is performed using variables, and the final decision on motion
estimation is performed every 4 frames. This allows several frames to ‘vote’ on
the motion, keeping the scrolling from being incorrect due to any errors in other
parts of the system.

Feature Detection: Traditional features include edges and corners. However,
edges are not significantly temporally coherent and corner features are too com-
putationally expensive to find at many image locations while retaining real-time
performance. Instead, corner-like features are detected using image gradient in-
formation (Equation 1).

S(x, y) = (G2
x + G2

y) (1)

Gx(x, y) = ∂I
∂x ≈ sobelx(x, y), Gy(x, y) = ∂I

∂y ≈ sobely(x, y) (2)

S(x, y) is the Sobel operator and the Sobel functions denote convolution with
the x and y components of the Sobel kernel. All corners cannot be detected
using the Sobel operator; however, it provides a useful first-step culling of pixels
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for additional processing. Frame n is filtered using the Sobel x and y filters.
The Sobel operator is then applied to every pixel in scanline order. If S(x, y) is
greater than an edge threshold, the pixel at (x, y) in frame n is labeled a feature.
Once k features are detected the Sobel operator is no longer applied, with k = 50
providing good results. The list of detected features is then passed onto the next
step, template matching.

Template Matching: Template matching alone is not reliable since only image
pixel difference errors are used and neither sensor noise nor lighting variations
are modeled. Template matching is used in this algorithm because it is computa-
tionally inexpensive and provides useful match estimates. Matching is performed
for each feature detected in Frame n. For each feature, the 15x15 pixel neighbor-
hood around the feature is tested for image similarity using the sum of squared
differences (SSD). 15x15 sized features were chosen as this size is large enough
to capture visually distinct regions and significant intra-frame physical motion.
Let tf denote a 15x15 pixel sized template image consisting of the pixel neigh-
borhood at (i, j), where feature f was detected in Frame n. Then, to find the
closest match in Frame n − 1, we can use the following equation (equivalent to
SSD in the case of a non-changing image and template):

min
(x,y)∈N

M(x, y) =
7∑

k=−7

7∑
l=−7

tf (k + 7, l + 7)f(x + k, y + l) (3)

where N is the 15x15 pixel neighborhood around (i, j). The location of the
closest match is found by testing every offset around location (i, j) and comparing
the 15x15 sub-image there with the 15x15 sub-image from the feature’s pixel
neighborhood. The matching is performed from the current frame to the previous
frame instead of vice versa since a feature detected in Frame n − 1 may not be
detected in Frame n.

Direction Estimation: The direction cannot be estimated by simply count-
ing the most dominant template matching direction amongst all features. Such
estimation would be temporally incoherent since neither the feature detection
nor template matching component is perfectly coherent. To remove temporal
incoherencies, the estimated directions of the matched feature locations are tem-
porally filtered. For each frame, the most dominant direction is computed and
a counter for that direction is incremented. For each direction, a counter is ini-
tialized at zero. After m frames, where m is typically between 3− 5 frames, the
counter with highest count is chosen as the estimated direction with other coun-
ters reset to zero. Only a small amount of temporal filtering is needed since the
features are individually robust. The direction estimation fails if the camera is
moved largely between frames since at least one feature from the previous frame
must be visible, as in other template matching based algorithms.

Determining Camera Motion Magnitude: The directions of dominant
camera motion are computed using the tracking algorithm, but their magni-
tudes are not known accurately. Camera motion magnitude must be calculated
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accurately to determine how to adjust the scroll speed in applications that need
zoom control. We use motion history images (MHI) [15] to estimate camera
motion magnitude. Motion histories are encoded in single images such that a
single image can be used for simple, robust and computationally inexpensive
gesture recognition. An MHI is computed by performing background subtrac-
tion between the current and previous frames. At locations where the pixel values
change, the MHI is updated by decrementing by a pre-defined constant amount.
By averaging the intensity values of the MHI, the average camera motion magni-
tude is estimated. The following equation calculates the MHI’s value at position
(x, y) in the camera image at time t:

HT (x, y, t) =
{

τ if D(x, y, t) = 1,
max(0, HT (x, y, t − 1) − 1) otherwise (4)

where HT is initialized to be 0 in the first frame and D(x, y, t) denotes an image
difference between frame t and t−1, with τ being the number of frames of motion
that the MHI should represent. In this manner, the MHI compactly represents
the motion magnitude from the incoming video, with areas ‘lighting up’ when
significant motion is detected and the whole MHI fading to black if no motion
is detected. The simplicity of the MHI calculation makes it amenable for use in
driving the scroll level and velocity as well as camera shake detection (Section 5).

4 Results

Our algorithm’s frame rate is 10fps on our test hardware, a Nokia 6630 smart-
phone, with 1 motion magnitude and motion direction update every 3−5 frames,
with more frequent updates possible at the expense of accuracy. In our experi-
mentation, only smooth walls result in complete tracking failure since temporally
coherent features are not found. Otherwise, the tracker’s performance matches
users’ physical motion at a responsive rate with no errors in typical indoor and
outdoor environments.

Motion estimates computed are accurate for user interaction, never estimat-
ing the wrong motion direction even when the device is abruptly switched in
directions. The motion magnitude is also accurate, mainly representing the im-
mediate past since is is not recomputed often, which turns out to be suitable for
automatic zooming. The biggest limitation of our algorithm is that detectable
physical motion speed is limited since intra-frame matching is performed and
part of the previous frame must be visible in the current frame to establish
feature correspondences.

To measure the accuracy and performance of our algorithm, we compared our
tracking algorithm with the Kalman filter-based tracker from [6]. The Kalman
tracker has higher motion estimation accuracy, as expected, since the Kalman
filter greatly improves the quality of intra-frame matching. However, the com-
putational requirements are significantly greater since several matrices must be
multiplied and inverted per frame. On devices with limited computational re-
sources, our algorithm provides sufficient motion and velocity accuracy for user
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Fig. 3. Picture browser application. The application automatically adjusts the zoom
level to help the user browse

interaction with many leftover cycles for intense applications such as 3D games
(Section 5) at the trade-off of more limited accuracy since the temporal filtering
in our algorithm cannot match a Kalman filter.

A general issue with camera-based mobile device user interfaces is that the
user’s physical environment may have very limited space. In such situations,
it may be advantageous to provide a ‘clutch’ to turn the tracking on/off. This
would emulate the act of lifting a mouse once the edge of a desk is reached
in traditional desktop interaction. In our informal testing we did not provide a
clutch, however in commercial implementations this is a consideration to keep
in mind. Another general issue is that all camera-based user interfaces require
adequate light for tracking. Problems can arise particularly for a mobile device in
low lighting conditions if the device has an automatic ‘night mode’ as incoming
images will already be processed and may be too noisy. In dark environments,
applications should default to joypad-based interaction.

5 Applications

We implemented several test applications to demonstrate our algorithm’s
strengths and limitations. In general, any mobile application that requires
scrolling and/or zooming could make use of our approach provided that an on-
board camera is present.

Zooming Photo Browser: As cameras become more widespread on mobile
phones and storage size increases, managing photos becomes a more difficult task
for the user as large amounts of information must be viewed with limited input
modalities. Current typical photo viewer applications show photo thumbnails as
lists, grids, or 3D carousels. Since image selection and scrolling are done with
the joystick, the amount of time a user needs to browse their images is directly
related to the number of images that they are browsing.

Our photo browser test application (Figure 3) shows thumbnails of the user’s
photos in a grid layout. The user can scroll in four directions (up, down, left,
right, in the camera plane) by physically moving the mobile device. In this case it
is difficult to view all the images as some zoom control is required when looking
for a particular image. If the zoom level is not properly set, it is difficult for a
user to select a particular image from the set as the scrolling will be too fast. To
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(a) (b)

Fig. 4. (a) Camera-based interaction in a document viewing application. (b) Mapping
physical motion to viewing direction creates the illusion of a window into an environ-
ment

address this problem, we used the technique introduced in [7]. Adaptive zooming
based on the magnitude of the user’s physical movement keeps the scroll speed
virtually consistent, allowing the user to browse more thumbnails by only moving
the device faster.

Document Viewer: Scrolling a document is a commonly difficult task on mo-
bile devices. For instance, web content designed for desktop computers is much
vertically longer since mobile devices have narrower screens. In addition, joy-
stick scrolling is especially difficult when scrolling line-by-line. An alternative is
to add an extra hardware button for scrolling. However, an extra button is not
a preferable solution for mobile device manufacturers due to the lack of extra
physical space on the device along with additional manufacturing costs.

In the document viewer prototype application we implemented (Figure 4 (a)),
the user can vertically scroll documents by moving the device. The scroll speed
depends on how fast the user moves the device, which is much more intuitive
than changing scrolling speed depending on how long the user presses the joystick
or via menu options and settings. One issue we identified in this application is
that at some point, the user has to move the device more than they can reach.
For example, if the user is scrolling to the right, at some point they will reach
the physical limit of their arm’s motion. To address this problem, we use the
joystick as a ‘carriage return’, which scrolls the document to the beginning of
the next line and allows the user to move their arm back to the left again. After
a carriage return, all tracked motion except movement to the right is ignored.

3D Game Interaction: Creating an immersive 3D experience is difficult on
mobile devices due to the limited display size. The most immersive experiences
are typically created using a combination of large displays reducing peripheral
vision as much as possible and/or virtual environment navigation tied to the
user’s physical motion. In our prototype (Figure 4 (b)), we map the user’s phys-
ical motion to the view-point to create the illusion of a window into a 3D world.

Our renderer loads standard Quake IIITM or Quake III ArenaTM maps. Tex-
tures, light maps, curved surfaces and lighting calculations are disabled for per-
formance. The rendering is done using the OpenGL ES implementation available
in the latest Symbian OS-based Series 60 SDK. Pre-computed vertex lighting and
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(a) (b)

Fig. 5. (a) Players move the device left and right to aim, and shake the device to
launch a bubble. (b) A jump command is issued by shaking the device at the correct
time to avoid tripping on the hurdle

fixed point calculations are used to improve performance due to the lack of a
floating-point unit on our test hardware. The renderer is able to realistically ren-
der lit virtual environments with several thousand polygons per scene at 3− 10
frames per second, depending on the environment that is chosen.

Navigation of the virtual environments is performed with a combination of
physical motion and keypad presses. Actual movement in the environment is
controlled by the keypad. The user looks around in the scene by physically mov-
ing the device around their body in the directions that they would like to look.
We map the tracked camera motion directions to a trackball as in traditional
mouse-based 3D interaction. The combination of detailed environments, camera-
based control and interactive frame rate create a mobile user experience closer
to that using additional hardware or larger displays.

2D Game Interaction: Camera-based user interaction can be used to enhance
2D games as well as those that are 3D. Camera motion can be used to add an
additional element of interaction in games that require precise movements or
very well-timed button presses. We created puzzle and action game prototypes to
investigate these ideas using the camera motion and shake detection algorithms
presented.

We modified the open source Series 60 port of the ‘Frozen Bubble’ puzzle
game (http://fb–s60.sourceforge.net/), switching the game control from using
the keypad to using the camera (Figure 5 (a)). In our version, the user moves
their device left and right to aim and performs sudden shakes to launch their
bubble. This has the effect of significantly changing gameplay as careful arm
motions are now required to aim, instead of a number of button presses, which
increases the excitement as the game is now more physically-based.

We created a camera-based action game prototype as well. Using sprites and
artwork from Konami’s ‘Track and FieldTM’ game for the Nintendo Entertain-
ment System, a new game (Figure 5 (b)) was created. A runner must jump over
a never-ending number of approaching hurdles. To jump, the player must time
the shaking of their device correctly so that the character does not crash into
hurdles. Relying on the camera exclusively for input results in a game that is
very simple to learn and understand but difficult to master, providing a new type
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of game. Shake detection is performed by thresholding the average intensity of
the computed MHI (Section 3).

6 Conclusions and Future Work

We introduced a new approach to improve the user experience on camera-
equipped mobile devices. A feature-based tracking algorithm was presented to
detect both physical motion direction and magnitude to permit one-handed phys-
ical movement based interaction. A camera was chosen since cameras are now
widely available on mobile devices and are very powerful sensors that can be
used without introducing new sensors. We demonstrated our approach in sev-
eral applications including a document viewer, photo collection browser and some
games. In the future, we would like to perform user studies to determine how to
improve user interaction further using mobile cameras.

While our tracking algorithm is computationally efficient and works well in
practice, some situations cannot be handled. Severe lighting differences will cause
the template matching to stop working properly. Motion in front of the camera is
ambiguous and can affect tracking results as it is impossible to tell whether the
camera is moving or not. Shadows may confuse the tracking system, but there
are known techniques for robust tracking in the presence of shadows that will
be incorporated into the tracking algorithm once additional processing speed is
available.
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Abstract. Accurate head tilt detection has a large potential to aid peo-
ple with disabilities in the use of human-computer interfaces and provide
universal access to communication software. We show how it can be uti-
lized to tab through links on a web page or control a video game with
head motions. It may also be useful as a correction method for cur-
rently available video-based assistive technology that requires upright
facial poses. Few of the existing computer vision methods that detect
head rotations in and out of the image plane with reasonable accuracy
can operate within the context of a real-time communication interface
because the computational expense that they incur is too great. Our
method uses a variety of metrics to obtain a robust head tilt estimate
without incurring the computational cost of previous methods. Our sys-
tem runs in real time on a computer with a 2.53 GHz processor, 256 MB
of RAM and an inexpensive webcam, using only 55% of the processor
cycles.

1 Introduction

Many existing face analysis systems require an upright face as input to function
correctly and often assume that no head tilt occurs (e.g., [1–5]). A head tilt
detection system could serve as a pre-processor to these systems by rotating the
input image by the estimated head tilt angle and thus facilitate interaction in
circumstances when the head is not upright. This would be particularly impor-
tant for people with severe motion impairments, e.g., due to cerebral palsy or
multiple sclerosis, who often have difficulties holding their heads straight. They
could then use video-based assistive technology that assumes an upright face,
such as EyeKeys [4], and thus gain access to communication software. Head tilt
detection can also enhance human-computer interaction by providing an addi-
tional mechanism to select commands. Left and right head tilts could be used
to rotate a 3D model, control a video game, tab through a web page, or select
letters in a scan-based text-entry program.

Among previous face detection algorithms, CAMSHIFT [6] is particularly
geared towards real-time human-computer interaction. It requires a color model
of the face that it will be tracking, and it finds the center, elongation, and tilt
of the face by determining the likelihood that pixels in the input image belong
to the face based on a comparison of their color values with the prior face color
model. Other face tracking methods also use color and motion information [7, 8].

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 90–99, 2005.
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Face detection systems that require extensive training use neural networks [9]
or AdaBoost [10–12]. These systems are very effective in detecting upright faces,
but give only coarse estimates of head tilt and put severe computational and
memory strains on a computer that, if used for human-computer interaction,
must at the same time provide computational resources for the application pro-
gram.

Motion of the head, the foreground object, in a video sequence causes pixels
to transition from background to foreground or foreground to background, de-
pending on the direction of motion. We observed that an image representation of
these transitions contains distinctly grouped pixels created by the motion of the
head, in particular by the change of its occluding boundary. Our contribution is a
method of estimating head tilt from the size, relative location, and orientation of
these groups. A second contribution is our method to estimate head tilt from the
motion of the center of the face. Assuming head rotation is parallel to the image
plane, a circle can be fit to the sequence of face centroids as the head rotates.
This second estimate of head tilt is combined via a weighting function with our
estimate based on motion of the occluding boundary to yield an estimate that
is comparable to the most powerful methods to date (e.g., [9, 12]).

Not only is our method a novel technique, but its real-time performance
on common desktop computers with inexpensive cameras makes it immediately
applicable to human-computer interaction, unlike some previous approaches
(e.g., [9, 12]). Our method can be integrated as part of a larger interaction
system; here we show its performance as a stand-alone system.

2 Head Tilt Estimation Algorithm

Our head tilt estimation algorithm has four steps:

1. Foreground and background segmentation,
2. Analysis of the motion of the occluding boundary of the face, which provides

head tilt estimate θb,
3. Analysis of the motion of the center of the face to compute angle estimate θc,
4. Analysis of the confidence factor w that determines the weighting of the two

estimates θb and θc in computing the final head tilt estimate θ = (1−w)θb +
w θc.

We assume that our algorithm has access to a foreground-detection method.
Ideally, the segmented foreground image If contains the user’s head alone, but
our method can also handle foreground segmentations that include the user’s
neck and shoulders and regions in the background (e.g., it works for the poor
foreground segmentation in Fig. 1C). In our experiments, we used a simple fore-
ground estimation method that subtracted the current frame (Fig. 1B) from the
initial frame without the user (Fig. 1A). Our method also relies on the mild as-
sumptions that movements in the background are not correlated with the user’s
head motion and affect a smaller number of pixels in the video than the user’s
head motion.
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A B C D

Fig. 1. Images used by our system. A) Background image. B) Example input frame.
C) Foreground image If,t computed from differencing images in A and B (here noisy
due to camera shift). D) The signed difference If,t − If,t−1. The gray pixels represent
Ib→f , the white pixels represent If→b

Foreground pixels in If are set to 1, while background pixels are set to 0.
A representation of motion is obtained by subtracting the foreground image of
the previous frame from the foreground image of the current frame, taking care
to preserve the sign of the result (Fig. 1D). The image is then separated into
two frames: binary image Ib→f to represent pixels that changed from belonging
to the background at time t − 1 to belonging to the foreground at time t, and
If→b to represent pixels in the foreground at time t − 1 and in the background
at time t.

2.1 Angle Estimation Based on Occluding Boundary of Face

We now explain how head tilt angles are estimated in the binary motion images
Ib→f and If→b. Three filtering steps are performed on both Ib→f and If→b to
find connected components that represent the motion of the occluding boundary
of the face well, in particular, at the sides of the face. First, connected compo-
nents too large or too small to represent the face are removed (Fig 2A). Then
components too far from the centroids of the respective components of Ib→f,t−1

and If→b,t−1 are removed (Fig. 2B). Furthermore, components whose orientation
is too far from the estimated orientation of the face in the previous frame are
removed (Fig. 2C). To perform this last filtering step, each remaining component
is processed as follows:

Pixels with high curvature at the top and bottom of the filtered components
are removed since they do not represent the motion of the sides of the face
well (Fig. 2D). For each connected component i, its lowest pixel xi,o is used as
the origin of a local polar coordinate space. We ignore additional portions of
the connected component above the origin with lower, but still relatively high
curvature within this connected component (orange in Fig. 2D) to allow for more
accurate angle estimation. The angle αi,j representing pixel xi,j is thus the angle
between the line xi,j−xi,o and the horizontal axis. If the face is tilting left, which
appears as a right rotation in the image, the pixel with the largest angle θL,i is
roughly equivalent to the head tilt angle estimated in the previous frame, and
the pixel with the smallest angle θR,i can be used to describe the head tilt in
the current frame:

θL,i = max { αi,j | ∀ j in component i }, (1)
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θR,i = min { αi,j | ∀ j in component i }. (2)

Angle θR,i is a particularly good approximation of the head tilt if component i
represents the motion of the right side of the face (shown left) in If→b (Fig. 2D)
or the motion of the left side of the face (shown right) in Ib→f . Vice versa, if the
face is tilting right, angle θL,i is a particularly good approximation of the head
tilt if component i represents the motion of the right side of the face (shown left)
in Ib→f or the motion of the left side of the face (shown right) in If→b.

If angles θL,i or θR,i are not within a small γT of the head tilt estimate
from the previous frame, then component i is discarded. The threshold γT was
experimentally set to 10 degrees and found to work quite well.

A B C D

Fig. 2. Results of filtering steps on image If→b in Fig. 1D. A) Size filter. B) Filter on
distance from centroid (cross) in previous frame. C) Filter on on difference to estimated
angle in previous frame. Here, but not generally, only one component remained. D)
Zoomed-in sub-image of If→b containing the filtered component in C (colored pixels)
and the discarded components (white). The pixels at the top and bottom of the filtered
component (blue, red, and orange) are disregarded in estimating the orientation of the
occluding boundary. Angle θL,i is approximately the head tilt in the previous frame
(dashed line) and angle θR,i the head tilt in the current frame (solid line)

At this point in the process, our method has eliminated all components that
do not represent the motion of the sides of the face well and created a list of angles
θL,i and θR,i for both Ib→f and If→b. Our algorithm compares these two lists by
only considering those pairs of angles θb→f , θf→b that are within a threshold τ
of each other. Threshold τ was experimentally set to 20 degrees. If there is more
than one pair remaining, pairs are eliminated if their size difference is too large.
In particular, a component that is less than 2/3 the size of its paired component
can be safely eliminated. If, however, no components meet this criterion and
there is only a single candidate component remaining in either Ib→f or If→b,
then no pairs are eliminated in this way. This deals with cases when components
of motion that should be considered are broken into smaller pieces as a result of
poor foreground estimation. If there are still multiple pairs remaining, the pair
θb→f , θf→b that has the largest combined area is chosen.
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The estimate of head tilt based on the analysis of the occluding boundary of
the sides of the face is then computed by the average

θb =
θb→f + θf→b

2
. (3)

We also define a measure of confidence pt that θb,t represents head tilt in the
current frame t:

pt = 1 − |θb→f − θf→b|
τ

. (4)

The confidence is high if the angle estimates based on binary motion images
Ib→f and If→b are similar and low otherwise.

2.2 Angle Estimation Based on Circular Face Motion

The angle estimate θb can be further refined by comparing the location ct,meas

of the center of the face in current frame t, measured in foreground image If ,
with its predicted location ct,circle. The prediction is based on a motion model
that assumes that the center of the face follows a circular arc in the video as the
face tilts sideways, and the center of rotation is a point on the neck (Fig. 4A).
A pixel x0 is used as the center of rotation. It has the same x-coordinate as
the center of the face c1,meas when the face is in an upright position. The initial
radius of the circle is the distance ‖ c1,meas − x0 ‖ between the initial center
of the face and its projection (Fig. 4A). The location of ct,circle on the circular
arc is determined by the intersection of the line between x0 and ct,meas with
the arc. If a large distance ‖ ct,circle − ct,meas ‖ between predicted and measured
face center occurs in subsequent frames, the radius is updated by the distance
‖ x0 − ct,meas ‖.

The estimate of head tilt based on the average of the observed and predicted
positions of the face center is

θc,t =
‖ ct,meas − ct,circle ‖

2
. (5)

As a measure of confidence in the angle estimate, we use the ratio et of distance
between the observed and predicted center positions to the maximum possible
distance Tt that the two points could be apart, i.e.,

et = 1 − ‖ ct,meas − ct,circle ‖
Tt

, (6)

where Tt is the distance to the farthest corner of the image from ct,circle.

2.3 Weighted Angle Estimation

The head tilt estimate θb, computed by analyzing the occluding boundary of the
face, and the estimate θc, computed by analyzing the circular motion of the face,
can be combined to compute the weighted angle estimate

θt = (1 − wt) θb,t + wt θc,t, (7)
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where the weighting factor

wt =
e2

t

e2
t + p2

t

(8)

is computed from et and pt, which represent the respective confidences in esti-
mates θb and θc. To prevent one measure from being the sole source of our final
angle estimate, we set a lower bound of 0.2 for the weight of θb,t and 0.1 for the
weight of θc,t.

A summary of the head tilt estimation algorithm is given in Figure 3.
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Motion Retrieval
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to Background
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Output: Head Tilt
Angle Estimate
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Connected

Motion Circle EstimationInput
Video Weighted Angle Estimate

Previous Frame

Fig. 3. Flowchart of head tilt estimation method

3 Human-Computer Interaction Experiments

To evaluate our method we performed three experiments. In experiment 1, we
compared our system’s head tilt estimation to that of two volunteers, who labeled
each frame of five 320-frame video segments with their estimate of head tilt
angle (Fig. 4B). Each of these video segments contained 5–7 separate head tilts
with motion varying from slow and smooth to quick and erratic for a total of 31
distinct head tilts across 1320 images. In two of the video sequences, people were
walking through the background. To verify that all the steps in our algorithm
are necessary, we also tested our method in three other configurations: with the
weighting component removed, with the centroid angle estimation removed, and
with only centroid angle estimation.

In the second experiment, we tested users’ ability to play the BlockEscape
game [4] using our interface. We tested 5 users who each played 4 games. The
game BlockEscape was developed as a tool to test the performance of human-
computer interfaces. In the BlockEscape game, the screen contains a number
of horizontal walls that are separated vertically by a fixed distance (Fig. 4C).
Each wall has one or more holes of various widths. At the beginning of the
game, a block appears on top of the screen. The goal of the game is for the user
to lead the block through the holes in the walls until it reaches the bottom of
the screen. The game was implemented so that the user only needs to initiate
the block’s horizontal movement by issuing “move block left” or “move block
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right” commands. The block continues to move in the initiated direction until
the user issues a command for movement in the opposite direction. The block’s
vertical motion is automatic – when a hole is reached, the block “falls through”
to the next wall or bottom of the screen. When a wall reaches the user’s block,
it pushes the block upwards. The user wins if he or she leads the block through
the holes in the walls to the bottom of the screen and loses if a wall pushes the
block up to the top of the screen. During playing, usage statistics, in particular,
the departure of the user-controlled block from an optimal path, were computed
based on the positions of the block, walls, and holes.

Our last experiment tested users’ ability to navigate web pages with our
head tilt estimation method. Test subjects were repeatedly shown web pages
consisting of three links and directed to select a particular sequence of links (on
average, the 2nd link on the page). A left head tilt directed the web browser to
highlight the next link, while a right head tilt directed the browser to follow the
currently selected link. The same sequence of links was used for all participants.
We recorded the number of links each participant successfully followed before
following an incorrect link.

A B C

Fig. 4. A) Centroid angle detection binary image showing the centroid circle, circle
center, and the original and current frame centroid positions. B) Experimental system
output. Our system’s head tilt estimate is represented by the white line, while the blue
line represents the average of the two volunteers’ estimates. C) Screenshot of the game
BlockEscape. As the white block falls towards the bottom of the screen, the player
navigates it through the holes in the black walls, which move upwards, by initiating
“move block left” or “move block right” commands

4 Results of Human-Computer Interaction Experiments

Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB
of RAM and in these experiments used less than 55% of the processor cycles.
The comparison of our system’s head tilt estimations to those made by two
volunteers is given in Table 1. A screenshot of the system’s estimate and that of
the volunteers shown in Fig. 4B. If we consider human observation to be ground
truth, our system has exhibited a good performance. Each component of our
method, angle estimation based on the analysis of the motion of the occluding
boundary of the face, analysis of the moving center of the face, and the weighting
scheme, is vital to the success of our interface. It is the combination of these
components that yields a valuable HCI tool, and removing one of them yields a
decline in performance (Table 1).
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Table 1. Accuracy-Evaluation Experiment: Angle differences between four versions
of our method and human observation, using 2 volunteers and five 320-frame video
segments. The estimates of degrees were rounded to whole numbers because precision
beyond this level in human observations is unlikely

Weighted Equally Weighted Boundary-based Center-based
Estimate θ Estimate θb + θc Estimate θb Estimate θc

Subject Median Std. Median Std. Median Std. Median Std.
Ang. Diff. Dev. Ang. Diff. Dev. Ang. Diff. Dev. Ang. Diff. Dev.

1 6 7 9 8 14 9 15 10

2 8 6 11 9 13 9 17 9

Avg. 7 6 10 8 14 9 16 10

The results for our BlockEscape experiment are summarized in Table 2. The
subjects were able to use our head-tilt interface with similar success as the
EyeKeys [4] or Camera Mouse [13] interfaces. All but one subject using our
interface won their last three games. The other won their last two games, which
indicates that practice improved the quality of the human-computer interaction.
If we eliminate each subject’s first game from the analysis, the average path
deviation is 1.4 and the median is 0.6.

Table 2. Game-Interaction Experiment: Five users played 4 games of BlockEscape,
issuing commands by head tilt and with three other interfaces [4]. Rows 1–3: The
number of deviations of the block from the optimal path during gameplay, which are
assumed to be due to false detections of the interface rather than misjudgments of the
player

Interaction Method Head Tilt EyeKeys Camera Mouse Keyboard

Path Deviation: Median 2.2 2.5 0 0

Average 2.6 2.9 2.3 0

Std. Dev. 2.8 4.0 2.7 0

Wins 16/20 (80%) 10/12 (83%) 10/12 (83%) 12/12 (100%)

In the games that resulted in losses, the users tilted their heads too far
sideways in executing a command. This motion and the return motion to the
neutral upright state both took time. As a result, it took the subjects too long
to issue the sequence of commands needed to navigate the block through the
holes in the moving walls before the game ended. After gaining experience with
the interface, the users soon became aware of this issue and played much better.

In the third experiment, users were able to follow an average of 5.9 links to
new web pages, indicating that 11.8 head tilts were correctly detected for each
incorrect detection. Individual results are in Table 3. These results indicate that
our method may be used in a real-world context of surfing the Internet.
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Table 3. Web Browsing Experiment: Number of web links correctly followed until a
link was followed by mistake

Participant Trial 1 Trial 2 Trial 3 Trial 4 Mean

1 3 5 7 2 4.3

2 6 8 9 8 7.8

3 7 7 6 9 7.3

4 4 3 5 2 3.5

5 8 7 7 4 6.5

5 Discussion and Future Work

Through our experimental results, we have shown that our system can act as a
fast, responsive, and usable interface on its own. Our results are very promising
since our system operated in less than ideal conditions: we used background
subtraction for crude foreground estimation, and there were objects moving in
the background. Since our method is not bound to a specific foreground model,
and any background and foreground information collected by a program can be
used as an input to our system, computational load may be significantly reduced,
which is quite important in the context of human-computer interaction.

In our experiments, users were able to play the BlockEscape game and browse
web pages effectively, demonstrating that our method works well in a real world
context. Our method also offers new opportunities for people with disabilities.
Used as a stand-alone interface or with another computer vision system, our
technique could help facilitate a richer interactive experience for quadriplegic
users who can control their head motion by enabling them to browse the web,
enter text, or play a computer game. This is an important aspect of our contri-
bution, since people with disabilities are dependent upon interface systems for
their interaction with computers.

Using the eyes as possible cues to our method could make it even more ro-
bust. The eyes can be detected with a variety of methods (e.g., [4]), and we
could use their axis of orientation to provide additional estimates to our system.
To combine these estimates, the use of democratic integration [14] rather than
equation 7 may be desirable in this case, since democratic integration can weigh
system components relative to their current performance in an extremely effec-
tive fashion. These ideas could extend to tracking other facial features, such as
nostril tracking. Other extensions would be to handle out of plane head rotation
by fitting conic sections rather than circles. However, modeling such head turns
is not as relevant to human-computer interaction, since users typically do not
wish to interact with a computer that is not the focus of their attention.

In summary, we have introduced an efficient, accurate method for fast head
tilt angle estimation. Our system operates on video data in real time with mini-
mal computational requirements. Experiments with our system have shown that
it is easy to use as an input and control device on its own and it has the potential
to become an important part of a robust human-computer interaction system.
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Attention Monitoring
Based on Temporal Signal-Behavior Structures

Akira Utsumi, Shinjiro Kawato, and Shinji Abe

ATR Intelligent Robotics and Communication Laboratories, Kyoto 619-0224, Japan

Abstract. In this paper, we discuss our system that estimates user at-
tention to displayed content signals with temporal analysis of their exhib-
ited behavior. Detecting user attention and controlling contents are key
issues in our “networked interaction therapy system,” which effectively
attracts the attention of memory-impaired people. In our proposed sys-
tem, user behavior, including facial movements and body motions (“beat
actions”), is detected with vision-based methods. User attention to the
displayed content is then estimated based on the on/off facial orienta-
tion from a display system and body motions synchronous to auditorial
signals. This attention monitoring mechanism design is derived from ob-
servations of actual patients. Estimated attention level can be used for
content control to attract more attention of the viewers to the display
system. Experimental results suggest that the content switching mecha-
nism effectively attracts user interest.

1 Introduction

For a computer system to efficiently support human activities, it has to recog-
nize users’ behaviors and understand their intentions. Therefore, the ability to
recognize human behavior by using sensors embedded in living environments is
becoming an increasingly important research endeavor.

In human-computer interaction tasks, for instance, attracting and keeping
the motivation of users become significant for extracting positive reactions. To
achieve this, the system has to estimate individual concentration levels and con-
trol the style and amount of displayed information. Since reactions vary from
user to user, such control should occur dynamically.

The same situation prevails in our “networked interaction therapy system,”
which entertains and effectively attracts the attention of memory-impaired peo-
ple and lightens the burden of helpers or family members [1]. “Networked inter-
action therapy” requires that the system provide remote communication with
helpers and family members as well as video contents and other services. To
attract the attention of users for long periods of time, the system has to detect
user behaviors and control the order and timing of provided services based on
estimates of concentration levels.

Various sensory devices can be used to detect user behaviors. Vision-based
detection of human behavior fits our needs since it does not require any special

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 100–109, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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attachments [2–5]. The system can remotely detect human motions, and users
do not need awareness of the sensory systems.

In this paper, we describe a method to estimate user attention based on
facial orientation and body motions related to visual/auditorial stimuli in dis-
played video/audio contents detected with a vision-based system. In the pro-
posed method, if user attention strays from the target medium, the system
changes the contents of the displayed information or prompts the user to lure
him or her back. We believe that such content control enables users to receive
services in a manner appropriate to their interests or preferences.

In the next section, we briefly introduce our “networked interaction therapy
project.” Section 3 outlines our observations. Section 4 summarizes the frame-
work of our attention estimation, and Section 5 shows the experimental results.
In Section 6, we give our conclusions.

2 Networked Interaction Therapy Project

Memory is frequently impaired in people with such acquired brain damage prob-
lems as encephalitis, head trauma, subarachnoid haemorrhage, dementia, cere-
bral vascular accidents, etc. Such people have difficulty leading normal lives due
to memory impairment or higher brain dysfunction; consequently, the require-
ment for constant care and attention creates a heavy burden on their family.
Networked interaction therapy, a term that denotes our method for relieving the
stress suffered by memory-impaired people and their family members, creates
easy access to the services of networked support groups [1]. There has been a
recent spate of similar studies in this field by several researchers [6, 7].

The main goal of networked interaction therapy is to support the daily activ-
ities of memory-impaired people by enhancing their quality of life and reducing
the burden on their family. For this purpose, we give networked interaction ther-
apy the capability to automatically detect the intentions of a memory-impaired
person. This provides the necessary information/entertainment for guiding the
individual to a more comfortable condition on behalf of his or her family before
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Fig. 1. Networked Interaction Therapy
System

Fig. 2. Experimental Environment
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the occurrence of such behavioral problems as wandering at night, incontinence,
fits of temper, and so on. Figure 1 illustrates an example of a terminal used for
networked interaction therapy. Currently, we plan to provide our service by using
a large screen TV and a TV-top box that controls Internet communication, cam-
eras, a microphone, and sensory media. We set up an experimental room that
imitates a normal living environment with a TV, an audio set, normal lighting
equipment, doors, windows etc. and installed a prototype system (Figure 2). All
experiments in Section 5 were performed in this room.

3 Observing the Behavior of Memory-Impaired People
Watching Videos

Prior to the system’s actual implementation, we observed the behavior of actual
memory-impaired patients watching pre-recorded video programs on TV. Ob-
servations were performed with a total of eight subjects in two groups: group 1:
three subjects at their own home, and group 2: five subjects at a medical facility
(“care house”)). Table 1 briefly profiles the eight subjects.

Table 1. Brief profile of eight subjects

group Subjects Age Case History Preference

A 62 cerebral contusion board game (“go”), songs (oldies)
1 B 81 Alzheimer’s disease train travel, songs (oldies)

C 69 cerebral infarction baseball games, songs (oldies)

D 83 cerebral dementia children’s songs
E 90 senile dementia N/A

2 F 89 Alzheimer’s disease movie
G 89 Alzheimer’s disease songs (oldies)
H 92 senile dementia N/A

We prepared four to ten video contents for each subject and showed them by
switching from one to the next every two to eight minutes (four contents every
seven to eight minutes for group 1, ten contents every two minutes for group 2).

Table 2 shows some major results in group 1, where it can be seen that
behavior varies for each video program in terms of total watching time and

Table 2. Observation Results for group 1

video contents memoir video music clip hobby news shows

Subject A 115 46 109 5
Watching time (sec) Subject B 120 111 115 110

Subject C 105 120 120 100

Subject A 4 many 4 many
Frequency of looking away Subject B 0 2 3 3

from TV (number) Subject C 4 2 0 3

Subject A 0 92 0 0
Total time of Subject B 0 97 0 0

hand moving (sec) Subject C 0 0 0 0
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the number of “looking in another direction” actions. This should reflect user
preference for each program, and the results suggest that the facing (or gazing)
direction is a significant cue for estimating user attention. In addition, such hand
motions as “keeping time with hand(s)” were observed for multiple subjects,
especially when they watched music programs. Therefore, synchronous actions
to auditorial signals are also considered indications of user attention.

Although the behavior of group 2 was not as remarkable as group 1, two
subjects (D and H) did display similar preferential reactions.

Other frequently observed reactions were as follows:

Positive reactions:

– pointing or gesturing to the TV
– laughing at presented TV programs
– singing with presented music

Negative reactions:

– looking at different orientation than TV
– grasping surrounding object(s) and moving it (them)

According to the above observations, in this paper we focus on extracting
user attention based on facial orientations and synchronous body motions into
auditorial signals.

4 Attention Monitoring

Since the human vision system plays an important perceptual and communica-
tive role in our daily life, gaze can be a strong cue for estimating user attention.
In our attention monitoring, we first focus on the orientation of the face. Strictly
speaking, facial orientation is different from human gaze due to the lack of eye
information. However, in most cases, a loss of visual attention is accompanied
by head movement. Therefore, we still consider facial orientation information
useful for attention estimation.

Another means for estimating human attention is body motions, especially
synchronous motions in visual/auditorial signals that appear in displayed con-
tent, which should represent user absorption with the content. In this paper, we
deal with the extraction of synchronous beat actions from music programs.

Detected attention can be used for controlling audio/video contents displayed
to users. For example, such positive synchronous reactions as looking at the TV
and/or keeping time with their body can be used as the basis to make a system
that shows the contents longer. In contrast, such negative behavior as turning
his/her head away from the TV can be used as an trigger for the system to
switch contents.

4.1 Vision-Based Behavior Extraction
Face Orientation Tracking
Vision-based face tracking is a popular research field that many researchers have
investigated [8–10]. However, few systems have achieved both robustness and



104 Akira Utsumi, Shinjiro Kawato, and Shinji Abe

high-speed processing. We developed a real-time and stable face tracking system
via SVM-based face detection coupled with prefiltering with SSR filters.

In our system we employ a pattern matching algorithm using rectangle tem-
plates called SSR filters for face candidate extraction. This process can operate
quite fast with integral images. Since we do not use color information, the algo-
rithm is not affected by the color temperature of the lighting. A Support Vector
Machine (SVM) is applied to determine whether a candidate is a face. To min-
imize the effects of hair styles, beards, and other facial hair, the forehead and
mouth regions are excluded from training patterns for SVM. Once located, we
track them with a “between-the-eyes” template [11] instead of tracking the eyes
themselves. The resulting pattern is fairly stable despite changes in facial ex-
pression. Facial orientation is then estimated based on the relative locations of
the eyes and the tip of the nose [12], which roughly estimates the direction in
which the subject is looking.

Figure 3 shows an example of face tracking. Graphics are overlayed on the
facial image, indicating detected eyes and the tip of the nose. The detected facial
orientation is indicated by the heavy line in the narrow region along the top of
the image. Figure 4 shows the results of face orientation estimation (horizontal).
Here ±1 in the vertical axis denotes the limit of detection, and for this subject
it corresponds to about ±45 degrees.

Detecting Body Motion

For detecting body motion, we currently employ an interframe subtraction
scheme. Here, the magnitude of motion is measured as the number of moving
pixels N .

Nt =
∑

i

si,t, (1)

si,t =
{

0 ((ci,t − ci,t−1)′(ci,t − ci,t−1) < threshold)
1 (otherwise) (2)

Here, ci,t denotes a color vector of the i-th pixel in an observed image at time t.
This method is simple but still valid for extracting temporal patterns of

motion magnitude. For instance, “keeping the beat” action can be detected as

Fig. 3. Example of facial
orientation estimation
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“frozen” points where the motion suddenly stops in a motion magnitude se-
quence.

beat =
{

1 (dNt−1
dt < 0 and dNt

dt � 0)
0 (otherwise).

(3)

Figure 5 shows an example of extracted beat action. Here, the person was
expressing the beat by hand (left figure), foot (middle figure), and nodding (right
figure). Our method can extract all of them in the same manner.
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Fig. 5. Example: Extracted Beat Actions

4.2 Contents Control

Figure 6 shows a process diagram of our contents control mechanism. Here, the
display system shows video contents to users whose behavior (facial orientation
and body motions) is observed by cameras and other sensory systems. Simultane-
ously, displayed content characteristics are extracted by the system. Currently,
only the beat structures of audio signals are extracted in this process. After
beat structure extraction, the temporal correlation between the beat structure
and user motion is evaluated. User attention to the displayed contents is then
estimated from the correlation and facial orientations.

If the system recognizes a loss of attention to the presented medium, it
switches contents to regain user attention. Figure 7 shows the results of such
content switching for a sample sequence, where the system controls the video
contents according to facial orientation.

4.3 Beat Tracking

“Beat” is one of the most fundamental properties employed by humans for recog-
nizing music. Therefore, a significant relation should exist between beat and the
behavior of people listening to music. For instance, recently Shiratori et al. an-
alyzed motion-captured dance movements in conjunction with musical rhythm
analysis [15]. In our perspective, we focus on user actions synchronous to the
rhythmic property of displayed music.

Beat tracking is a major topic of research interest among member of the
acoustic audio processing community, and many trials have examined it. One
major approach is based on frequency analysis [13, 14]. In this work, we also
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Fig. 7. Content Switching Based on Fa-
cial Orientation

formalized beat structure detection based on a set of signal power banks con-
sisting of several different frequencies. Input signals are first fed into a frequency
analyzer (FFT) and separated into discrete filter banks. In our current imple-
mentation, guard frequencies are 0-250 Hz, 250-500 Hz, 500-1 kHz, 1-2 kHz, and
2-4kHz.

For each bank, the power transition is examined, an envelope signal is pro-
duced, and the beat structures are extracted as a rising point using differential
operations. Figure 8 shows an example of structure extracted from a piece of
popular music.

5 Experiments

We conducted the following experiments to confirm the feasibility of our pro-
posed method. In contrast with the observation experiment in Section 3, all
experiments described in this section were performed using healthy adults.

First, we applied our facial orientation detection to a sequence of head rota-
tion images. Figure 9 denotes the results of attention estimation. Here, the sub-
ject mainly watched our TV system and sometimes looked down at a magazine
on his lap. Figure 10 shows typical sample images of the two states: “attention
on (looking at the TV set)” and “attention off (looking in other directions).”
The results indicate that in this case, our system accurately detected the loss of
attention away from the TV system.

Fig. 8. Example: Input Audio Signal (left) and Extracted Beat Structure (right)
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Fig. 10. Two states: “attention on
(looking at TV set)” and “attention
off (looking at other objects)”
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Fig. 11. Synchronous ‘beat’ behavior extraction

Next we performed detection of synchronous beat behavior related with dis-
played musical signals. Figure 11 shows both the detected beat from the dis-
played musical signal and the human beat motions. Here, several popular songs
were used for the experiment. At the bottom of Figure 11, we find the ex-
tracted synchronous motion (beat action). Furthermore, Fig. 12 shows the re-
sult of synchronous/non-synchronous behavior detection. Here on the left side, a
subject is listening to music and is instructed to keep the beat. On the right side,
he moves his hand randomly, indicating that our system can clearly distinguish
between the two states.

Finally, we examined the effect of content control based on attention moni-
toring (here, only face orientation is used.) We placed two TV sets in front of a
subject. One employed content switching mechanism based on facial orientation.
The other had no attention monitoring; video contents were just switched at con-
stant intervals in a predefined order. Table 3 compares the total viewing time of
the two TV sets for six subjects. As we can see, subjects watched the controlled
TV significantly longer, suggesting that content switching can effectively attract
user interest.
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Table 3. Watching time and number of missed detections

Subject a b c d e f Avg.

Watching Time (sec) with control 528 526 439 422 444 294 442*
without control 289 314 391 288 336 426 340*

detection error false-negative 0 3 6 0 3 1 2.2
false-positive 2 0 0 4 0 0 1

*p=0.06

6 Conclusions

We described vision-based techniques for estimating human attention based on
body motions and facial orientation. We employed an SVM to model human faces
and determined facial orientation by using the geometrical relation among the
eyes and the tip of the nose. Body motions (“beat actions”) were also extracted
and examined in terms of synchronization with the beat elements of displayed
musical signals. We applied these techniques to estimate the attention of users.
In the experiments, we controlled the timing of content switching to attract
user attention to the presented video contents. Experimental results suggest
that the content switching mechanism effectively attracts user interest. Such
capabilities are very promising for our “networked interaction therapy system,”
which effectively attracts the attention of memory-impaired people and lightens
the burden on helpers or family members.

Future works include enhancing the face and body tracking algorithms and
carrying out studies that involve a large number of participants.

This research was supported in part by the National Institute of Information
and Communications Technology.
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Abstract. In this study, a new method allowing recognizing and segmenting 
everyday life actions is proposed. Only one camera is utilized without calibra-
tion. Viewpoint invariance is obtained by several acquisitions of the same ac-
tion. To enhance robustness, each sequence is characterized globally: a detec-
tion of moving areas is first computed on each image. All these binary points 
form a volume in the three-dimensional (3D) space (x,y,t). This volume is char-
acterized by its geometric 3D moments. Action recognition is then carried out 
by computing the Mahalanobis distance between the vector of features of the 
action to be recognized and those of the reference database. Results, which 
validate the suggested approach, are presented on a base of 1662 sequences per-
formed by several persons and categorized in eight actions. An extension of the 
method for the segmentation of sequences with several actions is also proposed. 

1   Introduction 

Human activity recognition has received much attention from the computer vision 
community since it leads to several applications such as video surveillance for secu-
rity, human-computer interaction, entertainment systems and monitoring of patients or 
old people, in hospitals or in their apartments. The activity recognition problem is 
generally divided in two steps. The first, consists of detecting and tracking the person 
in motion while the second concerns the recognition. 

The focus of this work is on the second problem which is recognizing actions of 
everyday life, such as walking, sitting on a chair, jumping, bending or crouching, 
using an appearance-based model. Invariance to the view point is carried out by mul-
tiple views of the same action.  

The recognition system developed in this work is based on a global representation 
of the actions by 3D volumes (x,y,t) and a characterization of these volumes by 3D 
geometrical moments, which will be used as input for the recognition process. This 
global representation of actions has some advantages. In this method all information 
concerning an action is included in only one vector, that allows to recognize actions 
without systems such as finite state machines [6] or hidden Markov models [15]. In 
addition, information related to the dynamics of the action is contained in this 3D 
volume. There is no need to extract motion vectors in each image of the sequence, 
which is a difficult stage to realize due to the non-rigidity of the human body.  

Human activity recognition can be used in many applications of Human Computer 
Interactions and particularly those concerning the surveillance of human. A system 
raising the alarm when a person is falling or presenting an unusual activity (being in a 
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lying position all the day) can thus be developed. Electronic equipments can also be 
set up in public areas to detect crowd movement or fight and thus attract the attention 
of a human operator assigned to the video surveillance. 

2   Related Work 

Human action recognition is an important area of research that has led to different 
surveys [3 and 13]. Different approaches have been employed. They can be divided in 
four groups:  

• 3D approaches without shape model;  
• 3D approaches with volumetric models such as elliptical cylinders, and spherical 

models; 
• 2D approaches with explicit shape model such as stick figure, and 2D ribbons; and 
• 2D approaches without explicit shape model. 

Since the human body is not a rigid object and may present a multitude of postures 
for the same person, a robust modeling is difficult to obtain. Therefore, appearance 
models are utilized rather than employing geometric models.  

Among all existing 2D approaches without models, the ones that have considered 
the sequence as a succession of images are cited. Martin and Crowley [6] recognize 
hand gestures using three modules: 1) tracking, 2) hand classification in various pos-
tures, and 3) gesture recognition with a finite state machine. In Ref. [12], motion pa-
rameters are computed on each image, the recognition is then carried out with the 
hidden Markov models. This method was first used by Yamato et al. [15] to recognize 
tennis actions from binary image sequences.  

Another approach utilizes more complex classifiers and models of action. For ex-
ample, Hongeng et al. [4] proposed an automatic surveillance system with the appli-
cation of Bayesian network. While taking image features of the tracked moving re-
gions as input, mobile object properties are computed, and used to determine the 
probability that a scenario occurs due to several layers of naïve Bayesian classifiers.  

In the previous approaches, actions are seen as a sequential set of separated images 
and are not considered globally. Recently, Bobick and David [1] have presented a 
view-based approach to the recognition of human movement. They first construct a 
binary Motion Energy Image (MEI) which represents places, where motion has oc-
curred in an image sequence. Next, they generate a scalar-valued Motion History 
Image (MHI), where intensity is a function of how recent the motion is. Both charac-
teristics are constructed globally throughout the sequence. Given a set of MEIs and 
MHIs for each view/movement of aerobic exercises, they compute statistical descrip-
tions of these images using 7 Hu moments.  

The global study of the sequence can also be conducted by examining the empiri-
cal distributions of some characteristics. Chomat and al. [2] use space-time local ap-
pearance to recognize actions. The exit of a bench of 12 space-time filters provides a 
vector of measurement in each pixel. Joint statistics on these vectors represented by a 
multidimensional histogram make it possible to carry out the recognition of the ac-
tions. In Ref. [14], actions are also considered as long-term temporal objects and are 
characterized on several temporal scales using motion detection. The measurement 
between two actions, is therefore, the distance between empirical distributions of 
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these features. Masoud et al. [7] extract from each image of the sequence features 
relative to movement with the help of an infinite impulse response filter. From these 
images an analysis in principal component is performed to reduce the dimension of 
the problem for the recognition stage. 

The system of recognition proposed in this work utilizes a global representation of 
actions by 3D volumes (x,y,t) and a characterization of these volumes by geometrical 
moments. This avoids extracting information relating to the dynamics of the scene, 
since it is implicitly present in the vector of features. The first stage of the system 
consists of creating these 3D volumes and thus, extracting moving regions in each 
image. 

3   Motion Detection 

As previously mentioned, the first stage of the activity recognition process consists of 
detecting moving areas. Therefore, the current image is compared at each instant with 
a reference image continuously updated. A second stage is also necessary to remove 
shadows that eventually are present in the scene. 

To authorize multi-modal, the history of each pixel of the reference image is mod-
eled by a mixture of K Gaussian distributions [8 and 11]. The probability of observing 
the value of the current pixel Xt is then given by: 

, , ,
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( ) * ( , , )
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t i t t i t i t
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P X w X μ
=

= ΣN  (1) 

where, for i th Gaussian at time t, wi,t is the weight of the Gaussian, μi,t is its average 
value and Σi,t its covariance matrix. N( ) is the Gaussian density probability function 

which is defined, as follows: 
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where n is the dimension of the vector (3 in this case because this work is based on 
color images with 3 channels). 

Initialization of the Gaussian mixture is carried out by the K-means algorithm on 
the first 40 images of the sequence where it is assumed that no movement occurs. 
Each pixel of the background is modeled by K=2 Gaussian. It appears that this is a 
good compromise between computing time and the quality of results. For each new 
pixel Xt, its nearest Gaussian is searched. If the distance between this Gaussian and 
the current pixel is lower than a threshold, the latter is assigned to the background, 
otherwise, it is classified as a pixel belonging to a moving object. To deal with light-
ing changes during the process of acquisition, pixels labeled, as background, are used 
to update the reference image and thus, the Gaussian they are closest to: 
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where α  was empirically fixed at 0.1. 
This method leads to good results of detection. However, shadows are often de-

tected as a moving object. As a result, the shapes of the detected silhouettes are sig-



Action Recognition with Global Features      113 

nificantly deteriorated and this disturbs the algorithm of action recognition. A second 
stage is then employed to solve this problem. In this work it is assumed, as in Ref. [8], 
that shadows decrease brightness of pixels but do not affect their color.          

 

Fig. 1. Shadow is defined as a cone 

Thus, the angle Φ between the color vector of the current pixel Xt and that of the 
corresponding background pixel Bt (average of Gaussian nearest to the pixel) is an 
effective parameter to detect shadows. Note that if Φ is below a threshold, and the 
brightness of the current pixel is smaller than the brightness of the background, it is 
assumed that the pixel corresponds to shadows. Shadow is thus defined as a cone 
around the color vector corresponding to the background, as shown in Figure 1. 

At the end of the process, only pixels detected as moving by the mixture of Gaus-
sian and which do not correspond to shadow are preserved. Several morphological 
operations end this stage and lead to a binary map of moving pixels, for each image. 
As can be seen in Figure 2, good detection results are obtained. However, in some 
images of our sequences, the detection is not as good due to the close similarity be-
tween background colors and those of the moving person. It is observed that the 
space-time characterization of these binary images, presented in Section 4, is robust 
enough to lead to good action recognition results. 

 

     

 

 
 (a) Image difference (b) With shadow modeling 

Fig. 2. Motion detection 

4   Features Extracted from Sequences 

The features representative of the sequence from all the binary images need to be 
extracted. A global representation of actions is selected to simplify the recognition 
process and to enhance robustness during this stage. Therefore, an action is first rep-
resented by the 3D volume comprised of all moving points detected (x,y,t). This 
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space-time volume contains a lot of information, such as, the silhouette of the person 
in each image or the action dynamics. To characterize this volume, without extracting 
(and separating) different information (posture, movement, etc), 3D geometrical mo-
ments are considered. 

Let {x,y,t} be the set of points of the binary volume where x and y represent the 
space coordinates and t, the temporal coordinate. The moment of order (p+q+r) of 
this volume is determined by: 

{ }p q r
pqrA E x y t=  (4) 

where E{x} represents the expectation of x. In order to use features invariant in trans-
lation, the central moments are defined by: 

{ }100 010 001( ) ( ) ( )p q r
pqrAC E x A y A t A= − − −  (5) 

These moments must also be invariant to the scale to preserve invariance with the 
distance of action or with the size of people. This invariance could be obtained using 
the Hu moments [5]. In the present study these moments were not retained because 
they lead to invariance in rotation which is not desirable in this application. For ex-
ample, a person being upright or lying on the ground would then have the same fea-
tures. A direct normalization on the different axes, by dividing each component by the 
corresponding standard deviation is not desirable because it leads to an important loss 
of information, that is, the shape of the binary silhouettes appears to be rounder. Also, 
an identical normalization is carried out on the first two axes, while the third (time) is 
normalized, separately. The normalization performed by preserving the ratio of width-
to-height of the binary silhouettes is thus obtained by the following relation: 
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5   Presentation of the Sequence Database 

A sequence database comprising 8 actions is considered:  

(1) "to crouch down", 
(2) "to stand up", 
(3) "to sit down", 
(4) "to sit up",  
(5) "to walk",  
(6) "to bend down",  
(7) "to get up from bending", and 
(8) "to jump". 

Various viewpoints were acquired for each action. The front, 45° and 90° views 
were captured while others were synthesized from the sequences already recorded 
(at -45°, at -90°) in order to allow later segmentation of the sequences in actions (Sec-
tion 7). Each action was executed by 7 people, and repeated 230 times on average. 
The database comprises 1662 sequences. Presented Figure 3 are some examples of 
images of the database representing various actions and silhouettes of actors. 
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6   Recognition Results 
For the recognition, the sequence database is divided into two disjointed sets: 1) a 
reference database, and 2) a test database. To test invariance of the method compared 
to people morphology, the reference database is made up of actions carried out by six 
people. The sequences achieved by the last person were assigned to the test database. 
The recognition is done by searching for the vector of features corresponding to the 
action to recognize the nearest vector in the reference database, using the Mahalano-
bis distance. The action to be recognized is then assigned to the class of the nearest 
vector. The method is examined by using a vector of features O composed of the 14 
moments of 2nd and 3rd order: 

O = {M200, M011, M101, M110, M300, M030, M003, 
M210, M201, M120, M021, M102, M012, M111}. 

Note that the moment M020 is not calculated. This is due to the normalization which 
makes M020 inversely proportional to M200. In addition, the moment M002 is always 
equal to 1. 

   
 a) to sit down –45° b) to crouch down, front view c) to crouch down, -90° 

     
 d) to bend down –90° e) to walk 135° f) to walk, front view 

Fig. 3. Some images of the database 

Presented in Table 1 are the seven recognition rates obtained by placing each of 
the 7 persons in the test database, one by one. The average recognition rates, on the 8 
actions, vary from 93.3% to 100% depending on the person. Thus, one may conclude 
that actions are well recognized, regardless of the person. Note that the person present 
in the test database is not at any time present in the base of reference. This shows that 
the characterization is relatively invariant to the silhouette of the person. The worst 
recognition rate (93.3%) is obtained for person 7. This is not surprising because this 
person presents a particular binary silhouette due to her clothing, as shown in Fig-
ure 4. This person wears a long skirt (and it is the only person with a skirt in the base). 
In spite of this characteristic, the recognition rate is still good, which demonstrates 
that the global characterization of actions is robust. An extension of the number of 
actors in the base is envisaged in order to improve classification results. 
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Table 1. Recognition rate using a features vector composed by 14 moments 

Person 1 2 3 4 5 6 7 
Rate 95.5 99.3    96.8    98.0   100   99.0  93.3 

  

Fig. 4. Detection of a particular silhouette 

Table 2 presents the average confusion matrix obtained by averaging the 7 confu-
sion matrices corresponding to the different people. The most poorly recognized ac-
tion, (92.5%), is action 6 ("to bend down",) sometimes confused with action 1 ("to 
crouch down",). Other actions ("to crouch down", "to walk", "to jump") are consis-
tently well recognized with a recognition rate of 100%. It would be desirable to im-
prove these results with a second level of classification exclusively committed to the 
separation of the ambiguous classes (1/6, 2/7, etc.). This, may enhance clarity be-
tween the boundaries of these classes [9]. 

Table 2. Confusion matrix obtained with a features vector composed of 14 moments 

 1 2 3 4 5 6 7 8 
1 100 0 0 0 0 0 0 0 
2 0 96 0 0 0 0 4 0 
3 0 0 98.4 0 0 1.6 0 0 
4 0 1.3 0 96.5 0 0 2.2 0 
5 0 0 0 0 100 0 0 0 
6 7.5 0 0 0 0 92.5 0 0 
7 0 2.9 0 0 0 0 97.1 0 
8 0 0 0 0 0 0 0 100 

7   Segmentation of Real Sequences 
In the preceding study, geometrical moments on binary volumes, where temporal 
boundaries were known, were determined. Indeed, these volumes represent only one 
action. This assumes that the duration and the limits in time of each action carried out 
during video acquisition are known in order to extract the corresponding binary vol-
ume. However, for monitoring applications, this data is not a priori known. Nonethe-
less, the proposed model is used in order to segment real sequences where a person 
carries out several actions in a random order. It is necessary that the system is capable 
of cutting the sequence in to distinct actions and that it recognizes the nature of these 
latter. 

By examining the database it is observed that the duration of the actions is variable 
based on their nature and the person who executes them. Thus, for some cases the 
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action includes only 7 images ("to crouch down" for example) while others comprise 
60 successive images (for the action" to walk"). During the segmentation, it may 
therefore be necessary, at any given time, to consider several assumptions of temporal 
duration of actions. Input data of the system consists of a succession of binary images. 
At every instant tm, all the binary volumes Vm,i are considered. These binary volumes 
are assumed to be centered at tm and composed of the binary images which belong to 
the temporal window of length i, where i varies between 5 to 50 images. This is pre-
sented in Figure 6. Volume Vm,i is thus computed for images between / 2mt i− and 

/ 2mt i+ .  

 
Fig. 5. Binary volumes centered about the instant of interest 

The 14 geometrical 3D moments for all the space-time volumes Vm,i are computed. 
These vectors that at any given time are 46, when the limits of the signal allow it, are 
then compared with those of the reference database composed of 1662 sequences (i.e., 
1662 vectors). The distance dm,i between vectors is estimated with the Mahalanobis 
distance, as for the action recognition stage. Among all the distances dm,i computed, 
the smallest is selected. The corresponding action is assigned to times between 

0 0 / 2t i−  and 0 0 / 2t i+ . The process is reiterated (without labeling the time already 
assigned to a class) by searching the smallest distance among those which were not 
already selected, until all the points were assigned to classes. 

Segmentation results are presented in Figure 6. Here the horizontal axis presents 
the temporal index and the vertical axis is the recognized actions by the method. The 
ground truth, realized by cutting the sequence manually is also presented to validate 
the results. 

Most of the sequence was recognized similar to action 8, (i.e. "to jump".) Indeed, 
this action is characterized by its static character in space. This means that the major-
ity of people do not jump "high" enough to mark a significant variation of the vertical 
component of the binary silhouettes. Therefore, when a person slows down or turns, it 
is rather recognized as jumping. Thus, a new action is added to the ground truth: ac-
tion 9 which corresponds to "to half turn" and is present twice in the sequence. 

The action "to half turn" of the ground truth was always recognized as "to jump" 
by the system, since this action is not present in the reference database. Nevertheless, 
one may conclude that for the final application which consists of studying the behav-
ior of a person, it would be necessary to increase the number of actions to be recog-
nized by the system. 

The sequence was well cut and recognized for the actions "to walk", "to crouch 
down", "to stand up", "to sit down" and "to sit up". Thereafter, confusion between "to 
jump" and "to walk" is often made. An improvement could be obtained by better 
managing the temporal scales and by taking into account the probable duration of 
each action. 
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Fig. 6. New segmentation results 

8   Summary and Conclusions 
In this work, a method to recognize and to segment actions of everyday life is pro-
posed. It can be used for example to monitor old people in their flat and raise the 
alarm when they are falling or presenting an unusual activity. Motion detection is 
obtained initially on each image due to a representation of pixels by mixtures of 
Gaussian and a particular treatment of shadows. The 3D volume constructed for each 
sequence from the binary images resulting from detection, is characterized by its 3D 
geometrical moments. Those are normalized in order to obtain invariance to the scale 
of actions and to the morphology of people executing them. 

The proposed global characterization of sequences leads to an enhanced robustness 
and significantly improved results. A recognition rate of 97% on average was ob-
tained from a database of 1662 sequences divided in to 8 actions and carried out by 7 
people. The segmentation results could be improved by increasing the number of 
actions in order to incorporate all the transitional actions such as "to half turn", "to 
remain upright" or "to remain seated". An algorithmic enhancement could also be 
obtained by taking into account the probable duration of actions or by implementing 
more complex techniques for the segmentation (i.e., dynamic programming, relaxa-
tion, etc). 
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Abstract. Our goal is automatic recognition of basic human actions,
such as stand, sit and wave hands, to aid in natural communication be-
tween a human and a computer. Human actions are inferred from human
body joint motions, but such data has high dimensionality and large spa-
tial and temporal variations may occur in executing the same action. We
present a learning-based approach for the representation and recognition
of 3D human action. Each action is represented by a template consist-
ing of a set of channels with weights. Each channel corresponds to the
evolution of one 3D joint coordinate and its weight is learned accord-
ing to the Neyman-Pearson criterion. We use the learned templates to
recognize actions based on χ2 error measurement. Results of recognizing
22 actions on a large set of motion capture sequences as well as several
annotated and automatically tracked sequences show the effectiveness of
the proposed algorithm.

1 Introduction and Related Work

Visual input is an important component of human computer interaction. In many
applications, the objective is for human to control the responses of a computer
without using keyboard and mouse [15]. In these examples, the actions of the
human are deliberate and designed for easier understanding by the computer.
Furthermore, the visual sensing is arranged to simplify the problems. The sensed
images are of high resolution where hands and head motions are clearly visible
and 2D analysis suffices [13] [4] [5]. In contrast are applications where the human
is engaged in normal life activities and it is the computer’s task to understand the
human behavior and react according to the design goals of the system. Recogni-
tion of human actions, such as standing up, sitting down, pointing, waving arms
etc. is essential to obtaining such capabilities and is the focus of this paper.

Human action recognition has been of interest to researchers in computer
vision [2] [3] [9] [11] [13] [8] for many years. The problem can be defined as fol-
lows: given a motion sequence, the computer should identify the actions being
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performed by the human subject. First difficulty is in estimating the positions of
body parts; we do not address this problem but assume that such data is avail-
able, either from a Motion Capture (MoCap) system or from an automatic pose
tracking system. Even if accurate 3D positions are available, action recognition
is difficult due to the large dimensionality of pose space which not only increases
computational complexity but may also hide key features of the action and due
to significant spatial and temporal variations in an action for different, or even
the same, subject.

Proposed methods can be divided into two categories with respect to the
data types that they use: those based on 2D image sequences, e.g. [3] [11] [13]
[8] and those based on 3D motion streams, e.g. [2] [9]. A 3D approach has many
advantages over a 2D approach as the dependence on viewpoint and illumination
has been removed. Nonetheless, most algorithms use a 2D approach because of
the easy availability of video inputs and difficulty of recovering 3D information.

Our approach is based on 3D joint position trajectories. In this paper, our
emphasis is on action recognition, given the 3D joint trajectories; we explore the
effects of noise in automatically tracked data but robust tracking under complex
conditions is a separate topic of research by itself. The actions we consider are
primitive components that may be composed to form more complex actions.
Examples of actions are: walk, sit, stand, wave hand, nod etc. One type of action
is represented by one spatio-temporal motion template. Each template consists
of a set of motion channels where each channel corresponds to the evolution of
one joint coordinate. Channels with strong discriminative power are highlighted
according to Neyman-Pearson criterion [14]. The recognition is based on the
minimum weighted sum of χ2 distance to each motion channel.

The proposed system achieves a recognition rate of 90.7% on 848 motion
capture sequences consisting of 22 actions, showing the effectiveness of the pro-
posed algorithms. Good results on annotated and automatically tracked videos
show the potential of using real data.

2 Dataset and Pre-processing

We collected 848 MoCap sequences consisting of 22 Actions from Internet1. We
also generated some sequences of 3D joint position from a 3D annotation software
[7] and from an automatic 3D tracking software [7]. The generated data are much
less accurate compared with MoCap. They are used in testing only to show that
our algorithm can work on real data and that training on MoCap data transfers
to video sequences; we do not claim to have solved the tracking problem as well.

Actions in these videos can be grouped into 3 categories according to the
involved primary body parts: leg+torso, arm, head. The categorization is illus-
trated in Fig.1. Actions in the same group are mutually exclusive to each other,
but actions from different groups can be recognized simultaneously. This allows
us to execute logical queries such as find the sequence in which the subject is
walking while his head is nodding.
1 Part of data come from mocap.cs.cmu.edu, which was created with funding from

NSF EIA-0196217
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Fig. 1. Categorization of actions that need to be
recognized

Fig. 2. Three different joint con-
figurations. Notice the difference
in the number of joints and joint
hierarchy

Actions can also be classified based on the overall motion of human body.
We view a stationary pose, e.g. stand or sit (white blocks in Fig.1) as a special
type of action, with the constraint on the minimum duration. The transitional
actions (gray blocks) transit from one stationary pose to another. The remainder
(black blocks) consist of periodic actions (e.g. walk, run) and other actions.

MoCap data provides three rotation angles of each joint at each frame, how-
ever, we can not use them directly primarily because the data are heterogeneous
in terms of different joint configurations (i.e. number of joints/bones, joint names
and joint hierarchy). One example of this difference is shown in Fig.2. Using rota-
tion representation, it is difficult to find correspondence between two sequences
with different joint configurations. Instead, we compute 3D joint positions from
rotation by kinematics. To find correspondence between two different joint con-
figurations, we simply specify the corresponding joints the same name and ignore
unwanted joints. We unify all joint configurations to the one shown in Fig.2(c)
that consists of 23 joints. The joint positions are normalized so that the motion
is invariant to the absolute body position, the initial body orientation and the
body size.

3 Action Representation
Using Spatio-temporal Motion Templates

As there are 23 joints and each has 3 coordinates (only y coordinate is used for
hip), the whole body pose at each frame can be represented by a vector (called
a pose vector) in a 67D space (called pose space). Consequently, any instance
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Fig. 3. Examples of action walk and sit. The horizontal axis is the frame number. The
difference between the two sit sequences shown in (c) and (d) is significant. Note that
the length of (c) and (d) is also different

of action can be viewed as a trajectory in the pose space. Fig.3 shows two
instances of action walk and sit. Here for purpose of visualization, we overlay 67
1D trajectories of each single coordinate together. For example, the pose shown
in Fig.2(c) corresponds to all points at the first frame of Fig.3(a).

An action recognition algorithm has to take dynamic information into consid-
eration. Classification techniques based on static poses, such as Bayesian Net-
work or Support Vector Machine (SVM), clearly won’t work because different
actions can share the same static poses. We tried a Bayesian network to classify
static pose and found the classification accuracy to be less than 50%. Johansson’s
seminal study on Moving Light Displays (MLDs) [6] also confirms this result.

Hidden Markov Models (HMM) [10] is a powerful tool to capture dynamics of
a time series. However, training a continuous HMM in such a high dimensional
space requires large amount of training samples, which is not always available,
especially for those infrequent actions. Other widely-used techniques include Dy-
namic Time Warping and template matching. Template matching is appealing
to us because of its simplicity and less demanding requirement for training sam-
ples. Action recognition can be intuitively formulated as a template matching
problem: If we are given one motion template (trajectory of pose vectors) of each
action type, we can recognize an unknown sequence by comparing the trajectory
of the unknown sequence with each template and find the best match using some
distance measurement, e.g. Sum of Squared Differences (SSD).

However, this idea over-simplifies the problem because it does not consider
noise and the spatial variation among the different instances of the same action
type. For example, the idea may be able to recognize the walk sequence shown in
Fig.3(b), given Fig.3(a) as the template, because these two sequences appear to
be very similar. But there is apparent difference between the two sit sequences
shown in Fig.3(c) and (d) and thus template matching based on simple distance
measurement may misclassify this example.

Another problem is that trajectories have different discriminative power. For
instance, the sine wave-like trajectories in the walk examples are salient and
suitable for distinguishing walk from sit. The trajectories shown at the top and
bottom of the sit examples look also unique. However, the difference between
most of corresponding trajectories (those in the middle of each figure) in walk
and sit can not be easily seen. Thus those trajectories are not good features
for distinguishing walk and sit. Using all trajectories evenly for template match-
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ing is undesirable because the discriminative power of those good features is
compromised when the distance between two whole pose vectors is computed.

We address these two problems in next two sub-sections and we describe the
recognition algorithm in section 4.

3.1 Learning Motion Channels
We define a motion channel as the information that encodes the evolution of a
single joint coordinate for a specific action class. If we are given several training
samples, the simplest form of a motion channel is the mean vector of the samples
and SSD can be applied as the matching function. But as stated above, this
can not accommodate noise and the spatial variation among real sequences. So
we also include the variance information in the motion channel and use the
following χ2 function to measure the closeness, or fitting error in other words,
of an unknown trajectory X to the motion channel C. μ and σ2 are mean and
variance vector of C. f is the frame index.

err(X, C) = χ2(X, C) =

L∑
f=1

(
Xf−μf

σf

)2

L
(1)

Unlike SSD, the χ2 function considers the prior distribution of the training
samples and consequently allows large deviation from the mean when the vari-
ance is also large. Note that Eq.1 is normalized by L, the length of the channel, to
eliminate the discrepancy caused by different channels lengths. Fig.4(a) shows
some training samples of one channel and (b) shows the corresponding mean
vector μ and error bar (μf − σf ,μf + σf ) at each frame.

Fig. 4. (a) and (b) show some training samples of a channel with single cluster and the
corresponding mean vector μ and error bar (μf − σf ,μf + σf ) at each frame. (c) and
(d) show some examples of a channel with multiple clusters and the clustering result
using k-means algorithm

Eq.1 works fine when there is only one cluster. However, as shown in Fig.4(c),
a channel may have multiple clusters (The training samples shown here contain
two types of sit: sit on a high stool and sit on a step stool). So we use k-means
algorithm to cluster the training data first and then find the closest match, as
shown in Eq.2. μc and σc

2 are mean and variance of the c-th cluster of C.

err(X, C) = min
c

L∑
f=1

(
Xf−μc,f

σc,f

)2

L
(2)
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The number of clusters is set manually. Note that k-means algorithm takes
vectors with length L as the input so the clustering result is not affected when
two cluster centers are crossing at some frames, as shown in Fig.4(c) and (d).

We also tried other soft clustering algorithm such as Gaussian Mixture Model.
However, in many cases, because we don’t have enough training data (i.e. the
number of training samples is less than 67), the covariance matrix of each Gaus-
sian is singular and thus each training sample determinately belongs to one of
clusters. Therefore the result is almost the same as k-means.

Temporal variation also exists, i.e. training samples contain different num-
ber of frames. In such cases, we first resample these trajectories using Spline
interpolation so that they all have L frames. For periodic actions, we manually
align training samples such that starting and ending phases are approximately
the same.

3.2 Learning Motion Templates

We define a motion template as a set of N motion channels {Cj} with weights
{wj}, j=1,2,...,N, which as a whole can capture the uniqueness of the motion
of one specific action type. The error of fitting an unknown sequence Y (with
length L) to template T is the weighted sum of fitting error of component Yj to
the corresponding channel Cj , as shown in Eq.3.

err(Y, T ) =
N∑

j=1

wj · err(Yj , Cj) (3)

Weight wj should reflect the discriminative power of Cj . We learn wj accord-
ing to the Neyman-Pearson criterion [14]: We impose constraint on classifica-
tion rate and try to minimize false alarm rate. Suppose we have P training sam-
ples of T and Q training samples of all other templates, which are considered as P
positive and Q negative training samples of T . Suppose (e+

j,1, e
+
j,2, ..., e

+
j,P , e−j,1, e

−
j,2

, ... , e−j,Q) are errors of fitting P positive and Q negative samples to chan-
nel Cj . We sort these P+Q values in ascending order and the sorted list is
(ej,1, ej,2, ..., ej,P+Q). If the classification rate is γ, we have to accept γP pos-
itive samples. Suppose the shortest sub-list that contains γP positive samples
is (ej,1, ej,2, ..., ej,Rj ). It also contains Rj − γP negative samples. Rj−γP

Q is thus
the minimum possible false alarm rate. Let wj be the true rejection rate and it
is normalized as follows:

wj =
(
1−Rj−γP

Q

)
/

N∑
n=1

(1−Rn−γP
Q ) (4)

Here ej,Rj defines an error threshold for channel Cj in that samples with
a larger error are rejected. We also define an error threshold for template T :
ε = max{ej,Rj}, j=1, 2, ..., N , which will be used in the recognition algorithm.

It is important to note that although this algorithm does not consider the
joint distribution of channels, the correlation between channels is actually pre-
served in that all channels are in nature synchronized by time. However, a coun-
terexample would be: Suppose we have two channels A and B, each contains



126 Fengjun Lv, Ramakant Nevatia, and Mun Wai Lee

two clusters (A1, A2) and (B1, B2). If the only possible combination of A and
B is (A1, B1) or (A2, B2), an unknown sequence with combination (A1, B2) or
(A2, B1) will generate a false alarm by the algorithm. Fortunately, in practice,
such counterexample rarely exists (It never occurs in our dataset actually).

For stationary actions such as stand, the process is somewhat different in
that there is no dynamic information. Therefore, the processing unit is a scalar
value instead of a vector. This is actually a special case of the above algorithm:
We can still use above equations except that L=1. Also when given training
sequences, each frame is considered as one occurrence of the action. So P , the
number of training samples, equals the total number of frames.

4 The Recognition Algorithm

Suppose we have trained a set of motion templates {Ti} (with length Li), the
recognition becomes straightforward: Given an input sequence Y , at each frame
t, we compare the fitting errors of Y within the sliding window with each of
templates and the one with the minimum fitting error is considered to be the
ongoing action, as shown in Eq.5.

action(Y ) = arg min
i:err(Y,Ti)≤εi

(err(Y, Ti)) (5)

Because there are three action groups leg+torso, arm, head and we only com-
pare templates in the same group, there may be up to three actions recognized
at one time. But if err(Y, Ti) > εi for all Ti in one group, none of the actions in
that group is chosen.

The correct recognition can not be done until the whole course of the action
has been discovered. This means the previous Li-1 frames may have already been
recognized as something else. We keep track of the minimum error and the best
action so far of each frame. At frame t, suppose Ti is the best match using the
predictor in Eq.5 and the fitting error is errTit

. The program looks back and
compares errTit

with error stored in each frame of [t−Li + 1, t]. If in one frame
errTit

is smaller, the minimum error in that frame is updated to errTit
and the

best action is changed to Ti. This method can correct wrong recognition of the
previous frames but there is still Li frames of delay.

As Ti has a fixed length Li, if Y and Ti have different time scale (e.g. someone
walks faster than others), the fitting error will be large even if Y and Ti represent
the same action. So we resample Ti to form a series of templates {Ti,Lil

}l=1,2,...,di.
In our experiment, di=10.

For stationary actions, to make recognition results more stable, we impose
a constraint such that the duration should be longer than some threshold Lδ.
To clarify, we compute errors of fitting each frame in [t − Lδ + 1, t] to Ti using
Eq.3. The overall error at current frame t is the mean of these Lδ fitting errors.
We chose Lδ=60, which is equivalent to 2 seconds video in NTSC format.
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5 Experimental Results

5.1 Results on MoCap Data

The 848 MoCap sequences in our dataset contain 159,564 frames in total. We
manually segmented these sequences such that each segment contains a whole
course of one action. In total we have 2343 action segments. The distribution
of these segments in each action class is not uniform. Walk has 204 segments
while lie2stand has only 19 segments. The average number is 107. The length of
these segments are also different, ranging from 47 to 91 frames. The average is
68 frames.

In Experiment 1, we randomly selected half of segments of each action class
for training and the remainder for classification. In Experiment 2, we reduced
the amount of training data to 1/3. We repeated these experiments five times
and the average classification rate of each class is shown in Fig.5(a). Here we
chose γ=95% as the classification rate in training. The overall classification rate
of Exp.1 and 2 is 90.7% and 86.9%, respectively. As expected, the performance of
the latter decreased, but not too much, which indicates the robustness in terms
of the amount of available training data. Compared with Exp.1, most of the first
3 best channels (not shown due to limited space) for each action did not change
(although the order may be different). This shows consistency of our algorithm
in selecting good features.

Fig.5(b) shows the confusion matrix of the action group leg+torso in Exp.1.
As indicated in those black grids on the diagonal, most of actions have been

Fig. 5. (a)Classification result of Exp.1 and 2; (b)Confusion matrix of the action group
leg+torso in Exp.1. A dark grid indicates strong confusion. (c)ROC curves shows the
influence of γ on the classification performance
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correctly classified. Strong confusion (dark grids) only occurs between similar
actions such as bow and bow2stand.

The classification rate γ plays an important role in our algorithm in that it
affects not only the channel weights in training but also the error threshold εi in
recognition. In Experiment 3, we used the same setup as in Exp.1 except we
chose different γ to see its influence. Although only in training phase can γ have
a direct influence, it can end up affecting the classification rate and false alarm
rate in testing. The ROC curves are shown in Fig.5(c). (Only some action types
are shown here.) As expected, there is a tradeoff between a high classification
rate and a low false alarm rate.

In Experiment 4, we tested our recognition algorithm on 73 unsegmented
long sequences (from testing set) with average length of 914 frames. We use the
templates learned in Exp.1. The algorithm achieves a recognition rate of 90.7%
(in terms of frames).

Our algorithm is fast. Training about 75,000 frames takes about 28 minutes
(computation time only, not counting the time of loading files) on a PC with a
P4 2.4GHz CPU. Recognizing about 75,000 frames takes only 9.3 minutes.

5.2 Results on Annotated and Tracked Data

We tested our algorithm on two annotated (994 frames in total) and one auto-
matically tracked (159 frames) sequence. Fig.6(a) shows some key frames of one
annotated sequence. The rendered annotation results using POSER are displayed
on the right. The text in top-right corner is the frame number with ground truth
label and the text in bottom-right corner is the recognition result. The complete
ground truth and the recognition result are shown in Fig.6(b).

Fig. 6. (a)Key frames of one annotated video; (b)The ground truth (top) and recog-
nition result (bottom)

Fig.6(b) shows that most of actions have been correctly recognized although
the segmentation is not perfect. Errors occur when the subject turns around be-
cause we don’t model such actions in our action set. “Carry” was not recognized
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for the same reason. “Reach” and “crouch”, however, were recognized as “point”
and “sit”, which are reasonable substitutions for “reach” and “crouch”.

The recognition rate on the annotated and tracked data is 82.3% and 80.6%,
respectively. This is satisfactory considering a substantial amount of jittery
noises contained in the data (root mean square position error rates of about
10 pixels (∼10 cms) and joint angle errors of about 20◦). The proposed algo-
rithm in general is robust to this type of errors with short duration because
the algorithm eliminates their effects on the overall fitting error by averaging all
frames within the sliding window.

6 Conclusions

We have presented a learning-base algorithm to represent and recognize 3D hu-
man actions using spatio-temporal motion templates. Each template consists of
a set of motion channels where each channel corresponds to the evolution of
one 3D joint coordinate. Channels with strong discriminative power are high-
lighted according to Neyman-Pearson criterion. The recognition is based on
the minimum weighted sum of χ2 distance to each motion channel. This simple
representation and recognition algorithm performs satisfactorily well in terms of
fast speed and high recognition rate on a large set of human actions.

We separate action recognition from the motion recovery problem (though,
the two may not be entirely independent) by using 3D data. This imposes one
limitation on the proposed approach. However, good results on the noisy anno-
tated and automatically tracked videos show the potential of using real data.

Our future work includes adding more arm-related actions and extending the
algorithm to recognize actions at the semantical level.
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Abstract. In this paper, we explore the problem of deleting objects in
still pictures. We present an interactive system based on a novel intu-
itive user-friendly interface for removing undesirable objects in digital
pictures. To erase an object in an image, a user indicates which object
is to be removed by simply pinpointing it with the mouse cursor. As the
mouse cursor rolls over the image, the current implicit selected object’s
border is highlighted, providing a visual feedback. In case the computer-
segmented area does not match the users’ perception of the object, users
can further provide a few inside/outside object cues by clicking on a small
number of object or nonobject pixels. Experimentally, a small number
of such cues is generally enough to reach a correct matching, even for
complex textured images. Afterwards, the user removes the object by
clicking the left mouse button, and a hole-filling technique is initiated to
generate a seamless background portion. Our image manipulation system
consists of two components: (i) fully automatic or partially user-steered
image segmentation based on an improved fast statistical region-growing
segmentation, and (ii) texture synthesis or image inpainting of irregular
shaped hole regions. Experiments on a variety of photographs display
the ability of the system to handle complex scenes with highly textured
objects.

1 Introduction

Removing and cutting objects from digital pictures are main operations of desk-
top publishing (DTP) for which many dedicated tools have been designed and
refined over the years (e.g., the magnetic lasso or the magic wand of Adobe r©

Photoshop r©). Image cutouts are typically pasted (composited) on a different
background for photomontages. Removing objects is important in the movie in-
dustry to obtain clean plates (say, remove camera tripods or other calibration
materials that have been used on stage to facilitate postprocessing computer
graphics effects). Clean plates are usually obtained by synthesizing the back-
ground mosaic by tracking and registering a sequence of frames and removing
undesirable objects by manually painting them for each frame, a time consum-
ing process. With the advent of image inpainting [2] and texture synthesis tech-
nologies [19] for generating seamlessly image portions, removing objects in still
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(a) (b)

(c) (d)

Fig. 1. ClickRemoval is an interactive image object removal system. As the user’s
mouse cursor rolls over the image, the current implicitly selected object is high-
lighted, (a) and (b). By simple mouse clickings objects are removed and background
portions are instantaneously synthesized, (c) and (d)

pictures becomes today an essential primitive of image retouching software. To
remove objects in photographs (see Figure 1), we do not need a pixel accuracy
that also requires to pull out the alpha matte but rather requires a coarse bound-
ing region that separates the selected object from the remaining background of
the scene. Because object cognition by computers is still very far from that of
human abilities, the challenge consists in designing an intuitive user interface
(UI) and corresponding effective user-steered segmentation algorithm for quickly
selecting objects by putting the user’s high-level cognition in the loop.

1.1 Related Work

Prior object selection work in images are classified into two categories:

Contour-based selection. A user marks the object boundaries by coarsely
and piecewisely sketching with the mouse cursor the contours that are on-
the-fly finely optimized to fit the object boundaries. The first contour-based
methods were developed independently in 1995 using either dynamic pro-
gramming [7] (intelligent scissors) or gradient descent optimization [4] (im-
age snapping). Those methods are also better known today as magnetic
lassos. Intelligent scissor techniques were later refined in [8]. Recently, a
Monte-Carlo probabilistic system, called jetstream [11], has been designed
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to extract contours using particles. Contour-based selection works partic-
ularly well for in-focus objects out-of-focus background images, where the
objects consist of a single outer contour. For more complex topological ob-
jects such as grid-like objects containing many holes, those methods are time
consuming as they require users to trace each inner contour (see Figure 6).

Region-based selection. A user gives a few hints on which portion of the
image is the object and which image pixels are the background, and an
optimization algorithm then extracts the object based on these cues. The
magic wand tool of Photoshop is such a typical system. Other approches are
either based on segmentation and triangulation [1, 3, 16] or graph cuts [5, 14].

Note that even for image cutouts, a coarse extraction is also enough as it al-
lows to initialize a trimap (labeling of images into background/object/undefined
areas) to precisely extract objects with alpha mattes [6, 15] as a postprocessing
operation. Matte extraction is required not only for copy-pasting translucent or
furry objects that have potentially soft pixel memberships (pixels being a mixture
of both object and background colors) but also necessary to merge seamlessly
the object boundaries with the new background image.

1.2 System Overview

Our system, called ClickRemoval, consists of two basic modules: (1) user-steered
segmentation, and (2) hole-filling. In the ideal scenario, the user just has to pin-
point objects s/he wants to remove and press the left mouse button to remove
and synthesize instantaneously the background part (see Figure 1). Because au-
tomatic segmentation may not yield expected results, we provide a simple mech-
anism to input bias by pointing and clicking just a few object/background pixels
(see Figure 2). The next section describes the ClickRemoval user interface. Sec-
tion 3 present the novel statistical region-growing segmentation algorithm, and
Section 4 concludes the paper.

(a) (b) (c)

Fig. 2. Matching computer/human object definitions by putting the user in the loop
and iteratively refining manually the segmentation. (a) depicts the segmentation ob-
tained after the user manually pinpointed object (red) and background (blue) cues. (b)
is the hole created by removing the slightly dilated object, and (c) is the result image
after texture synthesis
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2 User Interface Design

The user starts by loading a picture and moves the mouse cursor over the im-
age (Figure 3.(1-3)a). Whenever the mouse moves, the segmented area implicitly
defined by the cursor position is highlighted in real-time (Figure 3.(1-3)b). Com-
puting segmentations is done in linear-time1, as described in Section 3. Once an
object is removed by the user, a fast hole-filling texture synthesis procedure is
triggered [19] (Figure 3.1c, 3.2d and 3.3c).

ClickRemoval has three operation modes:

1. To remove the implicitly selected area Fig 3.(1b), the user clicks the mouse
left button. The system computes a bounding box around the removed area
(expands it by some constant factor to be sure the object is contained in the
selected area) and initialize texture synthesis using the remaining nonobject
pixels inside the box (Figure 3.1.(1c)). We implemented the per-pixel tex-
ture synthesis of Wei and Levoy [19] because of its flexibility and real-time
performance on current commodity PCs (see also [2]).

2. Sometimes, we prefer to design how to fill the hole using another part of the
image. We then scribble the image by pushing the left mouse button and
moving the mouse cursor over the portion of the image we are interested
to initialize the texture synthesis (Figure 3.(2c)). (Depending on whether a
hole has been created or not in the image, the UI interprets the left button
click differently.) We define the selected pixels by taking either the bounding
box of the stroke or choosing the image pixels falling within some prescribed
distance from the stroke.

3. Automatic segmentation may fail to deliver appropriate object decomposi-
tions. In case of failure, the user presses the SHIFT key and the mouse left
(object) or right (background) mouse button to indicate prior cues (Figure
2 and Figure 3.(3b)). ClickRemoval then instantly refines the segmentation
to satisfy the constraints of the user’s cues (segmentation priors). Texture
synthesis is either initialized automatically using the remaining pixels of an
enlarged bounding box, or user-steered (as described in 2.).

3 Statistical Image Segmentation

Image segmentation is computed using a fast iterative statistical region-growing
process. The region-growing segmentation framework dates back to the late 60s.
Since then, it has been a very popular method of image processing/computer
vision [13]. A region growing segmentation starts by initializing for each pixel a
corresponding single-pixel region (say, pixel region Rl = {(x, y)} has initially re-
gion ID number l = x+yw, where w denotes the image width). At each iteration
of the region growing algorithm, we consider the region adjacency graph (RAG),
and based on a merging predicate, decide to merge or not the pair of adjacent
regions that is under consideration. Usually, the RAG is dynamically updated.

1 More precisely, almost linear-time in theory
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(1a) (1b) (1c)

(2a) (2b) (2c) (2d)

(3a) (3b) (3c)

Fig. 3. The three different modes of the ClickRemoval interface: fully automatic, man-
ual texture selection, and both user-steered segmentation/texture selection

The segmentation result strongly depends on: (1) the merging predicate, and (2)
the order in which pairs of adjacent regions are inspected. Let Ri and Rj de-
note a pair of adjacent regions. A typical merging predicate P (Ri,Rj) is to test
whether |Ri − Rj| ≤ max{σi, σj}k, where Ri and σi (resp. Rj and σj) are the
color mean and variance of region Ri (resp. Rj), and k is a prescribed constant.
Let |R| denote the number of pixels defining region R. Let R(p) denote the re-
gion containing pixel p (bag of pixels). In our recent segmentation work [10], we
developed a fast linear-time algorithm with provably guaranteed segmentation
bound based on a statistical image generation model. We presented: (1) a con-
centration inequality based on statistical aggregation phenomena2 and showed
that in practice it is enough to consider (2) a static order of region pairs (that
is, do not update the RAG, a time consuming procedure). Because regions are
disjoint sets of pixels (Ri ∩Rj = ∅ for i 
= j), we can merge regions and retrieve
their IDs (R(p) provided a pixel handle p) using the optimal union-find data-
structure of Tarjan [9, 17]. The algorithm is further shown robust to noise and
handle occlusions [10] (that is, the method can segment as a single object several
connected areas of the image that belong to the same object). We summarize
the static order region-growing segmentation algorithm:
2 For example, the sum of independent uniform random variables yields a Gaussian

random variable (central limit theorem). More generally, statistical aggregation phe-
nomena have been recently found for random variables satisfying loose distribution
assumptions [10]
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RegionMerging(I)
1. � 4-connectivity of pixels C4 (implicit RAG) �
2. P ← {(pl, ql, Cl = |I(ql) − I(pl)|) | with ql ∈ C4(pl)}
3. � Sort P in increasing order of their Cl keys �
4. Sort(P)
5. for i ← 1 to |P|
6. do
7. if FindRegionID(pl) �= FindRegionID(ql)
8. then if MergePredicate(R(pl),R(ql))
9. then MergeRegions(R(pl), (ql))

The union-find data-structure [17] is implemented as follows:

InitializeRegionID(x)
1. parent(x) ← x
2. rank(x) ← 0

FindRegionID(x)
1. � Walk from x to the leader pixel element �
2. while x �= parent(x)
3. do x ← parent(x)
4. return x

MergeRegions(x, y)
1. � Union by rank and path compression �
2. xr ← FindRegionID(x)
3. yr ← FindRegionID(y)
4. if rank(xr) > rank(yr)
5. then parent(xr) ← yr

6. else parent(yr) ← xr

7. if rank(xr) = rank(yr)
8. then rank(xr) ← rank(xr) + 1

Figure 4 presents the segmentation results obtained by using different sta-
tistical predicates. ClickRemoval uses the following merging predicate based on
concentration inequalities [10]:

P (R,R′) =
{
true iff |R′ − R| ≤ Δ(R) + Δ(R′)
false otherwise

, (1)

with Δ(R) = 2562

64|R| (min(256, |R|) log(1 + |R|) + 2 log 6wh), for a 8-bit gray im-
age I of dimension w×h pixels. For color images, we consider the RGB channels
independently of each other and define the merging predicate as the Boolean And
of elementary predicates: PRGB(R,R′) = PR(R,R′) ∧ PG(R,R′) ∧ PB(R,R′).
Region-growing segmentation tends to yield imprecise boundaries compared to
graph-cut edge-based segmentation methods [5]. Loosely speaking, as regions
become bigger the mean/variance statistics reflect statistically better the region
attributes but does not tell much on whether merging two incident regions will
provide a seamless merge at the region borders. Thus, to obtain more precise
object boundaries from the region-merging paradigm, we rather consider the
statistics of the region crusts (and not the full regions as in [10]). Figure 5 illus-
trates this region/crust concept. The crust of region R is defined as the set of
pixels within distance c to the region’s border ∂R. (Thus for large enough c, there
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(a) (b) (c) (d) (e)

(b) P1 : |Ri − Rj | ≤ t
(c) P2 : |σ(Ri) − σ(Rj)| ≤ s max(σ(Ri), σ(Rj))

(d) P3 : |Ri − Rj | ≤
√

b2(Ri) + b2(Rj), with b(R) = 512
√

1
min(g,|R|) log(2 + |R|

wh
)

(e) P : |Ri − Rj | ≤ Δ(Ri) + Δ(Rj), with

Δ(R) = 2562

64|R| (min(256, |R|) log(1 + |R|) + 2 log 6wh)

Fig. 4. Region growing segmentation: (a) original image, (b) predicate P1 (mean
threshold with t = 30), (c) predicate P2 (standard deviation threshold with s = 1.5),
(d) predicate P3 (simple concentration inequality) and (e) ClickRemoval’s concentra-
tion inequality predicate P

(a) (b) (c)

Ri

Rj Ri RiRj

Rj

crust width

Fig. 5. Regions (a), circular region crusts (b), and crusts (c). The white areas are not
taken into account for computing region statistics

is no difference between regions and their crusts, and the algorithm is identical
to [10].) Furthermore, we only need to update the crust’s mean/variance statis-
tics when we merge regions . Updating the crust statistics is done by retrieving
the pixels of the merged region belonging to its crust using a slightly modified
flood-filling algorithm3.

Since fully automatic segmentation may give results that differ from human
perception, we provide a simple user-steered mechanism to control interactively
the segmentation. A user may input object (foreground)/background cues by
pointing and clicking at a few pixel positions. Each time a user input some bias,
the segmentation is recomputed in real-time (0.03s for VGA images on Intel r©

3 Flood-filling is used in painting systems to fill objects from a seed pixel position given
a specified foreground color (see [9], Chapter 2). Flood-filling-type segmentations are
also called watershedding (eg., Photoshop’s magic wand)
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Pentium r© IV 3.6 GHz), as we do not need to reinitialize or sort the region
pair order. We handle bias in our crust merging algorithm similarly to [10].
First, let us rename regions into metaregions, and define pure metaregions as the
metaregions that do not contain any bias information. The other metaregions are
said biased and contain at least one object/background pixel pinpointed by the
user. When inspecting the adjacent metaregion pairs, we never merge metaregion
pairs that contain both bias. Pairs with both pure metaregions are handled as in
the nonbias case. To decide whether to merge a biased metaregion with a pure
metaregion, we choose among all metaregions having the same bias ID (say,
1=object and 0=background), the one that statistically best matches the pure
metaregion and test using the merging predicate P whether they should merge
or not. At the last stage, we merge all biased object metaregions together, and all
biased background metaregions altogether. Note that ClickRemoval is different
from watershedding-like Photoshop’s magic wand since (1) it performs global
segmentation, and (2) accept both inside/outside object cues.

4 Experiments and Conclusions

We implemented the ClickRemoval system in C++ using OpenGL r©. The full
code is a mere 1000 lines, including both the novel crust merging segmentation
algorithm and the per-pixel texture synthesis procedure [19]. Figure 4 and Fig-
ure 5 displays a few examples obtained using ClickRemoval. The accompanying
video provides a sense of the UI and the system responsiveness. Although our
crust-based region-growing segmentation algorithm does not provide as accu-
rate object boundaries as edge-based graph cut methods [5], it is much faster,
allows to handle light user-supplied bias information, and is anyway enough for
our object removal application. Bias is input as a few inside/outside points (the
smallest “extra” information unit) and not by strokes as in [5]. This UI is partic-
ularly advantageous for objects with many contours, since “intelligent scissors”
assume in their UI that objects have only a single outer contour (Figure 6).

Fig. 6. ClickRemoval: 1-Click results (fully automatic segmentation)
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We are currently investigating further extensions to our system: pulling out ob-
ject mattes from trimaps obtained by our segmentation (e.g., see [6, 15]), trad-
ing between texture synthesis and image inpainting [2], testing various texture
synthesis methods (per-pixel, per-patch, per-tile, etc) while keeping the system
responsiveness.

We envision such an interactive system fed by live video camera images with
numerous applications in computational photography [1] and augmented/mod-
ified reality.

Fig. 7. Result with user-input bias: a few clicks are enough to remove complex objects

(a) (b) (c)

Fig. 8. ClickRemoval allows users to either (a) catch a hole, or (b) remove the whole
net using a single click. (c) is the result image after texture synthesis
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12. P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. ACM Trans. Graph.,

22(3):313–318, 2003.
13. A. Rosenfeld. Picture processing by computer. Academic Press, 1969.
14. C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extrac-

tion using iterated graph cuts. ACM Trans. Graph., 23(3):309–314, 2004.
15. J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. ACM Trans. Graph.,

23(3):315–321, 2004.
16. K.-H. Tan and N. Ahuja. Selecting objects with freehand sketches. In IEEE ICCV,

pp. 337–344, 2001.
17. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. In J. ACM,

22:2, pp. 215-225, 1975.
18. A. Telea. An image inpainting technique based on the fast marching method.

Journal of Graphics Tools, 9(1):23–34, 2004.
19. L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quan-

tization. In ACM SIGGRAPH, pp. 479–488, 2000.



Information Layout and Interaction Techniques
on an Augmented Round Table

Shintaro Kajiwara1, Hideki Koike1, Kentaro Fukuchi1,
Kenji Oka2, and Yoichi Sato2

1 Graduate School of Information systems, University of Electro-Communications,
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

kaji@vogue.is.uec.ac.jp, koike@acm.org, fukuchi@megaui.net
http://www.vogue.is.uec.ac.jp/

2 Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku,
Tokyo 153- 8505, Japan

{oka,ysato}@iis.u-tokyo.ac.jp
http://www.hci.iis.u-tokyo.ac.jp/

Abstract. Round tabletop display systems are currently being pro-
moted, but the optimal ways to use these systems to display a large
amount of information or how to interact with them have not been con-
sidered. This paper describes information presentation and interaction
technique for a large number of files on a round tabletop display system.
Three layouts are explored on our augmented table system: sequential
layout, classification layout, and spiral layout. Users can search and find
files by virtually rotating the circular display using a ”hands-on” tech-
nique.

1 Introduction

In small group meetings, people often bring their laptop PCs to see digital files, to
write memos, or to access the Internet. However, if we want to share information
displayed on the screen, we often face some difficulties. For example, the laptop’s
display is too small to share and it is hard to be seen by people other than
its owner. We often use a projector and a vertical screen. However, only the
presenter, the owner of the PC, can manipulate the information using input
devices of the PC.

To address such issues, horizontal circular display systems, which use front
or rear projection to display information onto the tabletop, have been developed
[2, 6, 7]. On these round tables, people around the table can share the displayed
information. They can change the orientation of the display by rotating the
information to see it from the right perspective. Moreover, since the displayed
information is close to each user, users can directly point and manipulate the
information by using their fingers.

Although previously proposed Systems [2, 6, 7] demonstrated these advan-
tages of the round tabletop display systems, they have not considered how to

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 141–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Scrolling using a window system (left) and using a rotation table (right)

display a large amount of information and how to find a particular file in this
amount of information.

This paper describes a method of displaying and interacting with a large
amount of information on a round tabletop display system, and also describes
the application of this method for displaying and searching image files.

2 File Layout

In traditional GUI environments, standard methods are used to display a large
amount of information. For example, it is usually displayed in a large virtual
area and different parts of the information are viewed by using a window with
scroll bars.

This technique could be simply applied to the round table. However, it has
to be considered that the table must be usable from any direction. That is, the
orientation of each file should be maintained so that it always faces the users
correctly.

It should be also considered how files appear or disappear on a round table.
In window systems, there are natural boundaries at the top, bottom, left, and
right of the window where files appear or disappear. On the other hand, the
round table does not have such natural boundaries.

3 Implementation

Figure 2 shows an overview of our system. The system is composed of a table,
an LCD projector, two CCD cameras, two PCs (Pentium 4 2.8GHz, 512MB
memory, Linux) for image recognition, and one PC (Pentium 4 2.8GHz, 512MB
memory, Windows) for image generation. The CCD cameras capture the images
on the table, and these images are processed by the two image-processing PCs. To
recognize users’ hands and fingers, we used a real-time finger tracking method we
previously developed [3]. As image-processing software, we used Intel’s OpenCV
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Fig. 2. System architecture

library. Each PC can recognize up to two hands in about 10 frames/sec. Then the
computer-generated images are projected on the table. The size of the projection
image is 67cm x 84cm.

4 Presentation

This section describes how a large amount of information is displayed on a
circular table that is physically limited in size.

The files are sorted based on the feature that the user selected. The basic
features are the filename, the creation date, and the file size. In addition, we used
the mean value (0 to 255) of the hue, saturation, and brightness of the image
file.

After the files are sorted, they are laid out on the table by using one of three
layouts: sequential layout, classification layout, or spiral layout.

4.1 Sequential Layout

In sequential layout, the sorted files are laid out sequentially on the table as
shown in Fig. 3. There is a boundary in the circle. When the user rotates the
table, files appear or disappear at the boundary. Currently 23 files that are the
same size are simultaneously displayed.
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Fig. 3. Sequential layout Fig. 4. Relation between arrangement
and order

4.2 Classification Layout

In classification layout, files are also laid out sequentially, but they are classified
based on a feature that users selected (Fig. 5). A maximum of 6 groups and 36
files may be displayed.

The user can select the method of classification, such as the filename, the
creation date, the file size, or some image features. In the case of classifying by
filename, the user can select the number of characters to be used to sort files
between 1, 3, 5, and 7. In the case of classification by creation date, the user
can select sorting options involving the year, month, day, and hour. In the case
of classification by file size, the user can select values between such as 1MB,
100KB, 10KB, and 1KB. In the case of classification by an image feature such
as color, the user can classify files using hue, saturation, or brightness.

Fig. 5. Classification layout Fig. 6. Relation between arrangement
and order
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Fig. 7. Screenshot of classification layout

4.3 Spiral Layout

In spiral layout, after the files are sorted, they are laid out to make a spiral from
the center to the edge of the circle. The size of the files increases as they go to
the edge. The relation between the size of the icons and the angle of deviation
is shown in Fig.9.

Fig. 8. Spiral layout Fig. 9. Relation between the files’ angle
and display size

5 Interaction

This section describes interaction capabilities of our rotational table. Basically,
the users are able to do multiple manipulate at a time.

Moving and copying: When the user pinches a file with a thumb and pointing
finger, the file is in selection mode and the user can move it by moving his/her
hand with two fingers closed. If the user moves the file from the inside of
the circular area to the outside, or from the outside to the inside, the file is
copied.
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Fig. 10. Screenshot of spiral layout

Fig. 11. Move Fig. 12. Zoom

Zooming: If the user points the file in sequential layout or in classification
layout, the file is automatically magnified as shown in Fig. 12.

Rotating: When the user shows five fingers and moves his/her hand inside the
circular area, all the images are virtually rotated.
If multiple users try to rotate, the rotation table responds to the hand that
reached it first.

Menu: When the user points at the background in the circular area with his/her
left hand, the structured menu appears (Fig. 15). The user can select each
menu item with the right hand.
The user first selects the feature used to sort files. Then, the second menu
appears where the user selects the layout method.
In the whole of the system, only one menu appears at a time. If multiple
users call up the menu at a time, it appears in front of the user who called
it up first.

Fig. 13. Rotation Fig. 14. Menu
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Fig. 15. Menus

Fig. 16. Relation between the position of the menu and the position of a file

6 Discussion

The sequential layout is a basic layout method in which the scroll metaphor of
a window environment is directly applied to a circular display. It is useful when
the user searches files sequentially because the files are sorted sequentially and
the user can see as many files as possible. However, the displayed size of the file
is fixed, and therefore the user needs to magnify the focused file one by one.

On the other hand, the classification layout sorts the files based on the feature
the user selected. It is useful particularly when the user searches for files for
which he/she already knows the creation date, the file name, and so on. However,
because the files in each class are laid out as they are stacked, it is sometimes
not possible to browse all the files in the class at a time.

In general, there is a trade-off between the displayed size of the files and
the number of displayed files. Therefore, it is important to consider the balance
between the visibility of each file and the browsability of many files. The sequen-
tial layout and classification layout are examples of this trade-off because the
number of displayed files and the displayed size of the files are fixed.
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On the other hand, spiral layout uses a focus+context technique in which
the size of files is gradually increasing. The user can see the detail of some files
while seeing as many files as possible. Moreover, the user can interactively move
his/her focus just by rotating the table.

Considering the visibility and the browsability of the three layouts, it seems
apparent that the sequential layout and the classification layout are better for
browsing because the number of displayed files is greater than that in the spiral
layout. However, the spiral layout provides more visibility because the user can
zoom files interactively just by rotating the table.

In the sequential and classification layouts, there exists a boundary where the
files appear or disappear, and this is not good for the user near the boundary.

On the other hand, in the spiral layout, the files appear from the center of
the table and all the people can see the files equally.

7 Related Work

Digital Desk [4] is the system that merges the physical desktop and the electronic
desktop into one. Capturing the user’s hands on the desk by the camera above
it, and projecing the digital information on it, the system allows the user to
manipulate the digital information as it is displayed on the physical desktop.

Augmented Surfaces [5] is the system that integrates the laptop’s desktop,
the table surface where the laptop is laid, and the wall. The user is able to move
the digital information in the laptop to the table and wall by dragging it out of
the laptop’s workspace.

Media Table [6] is the table where people can communicate by seeing and
manipulating objects projected on the table. The objects on the table move
freely. The user can gather the objects near him/her by touching the table.
However, Media Table did not discuss issues involving the visualization of a
large amount of information. The number of users who can interact with the
table is limited to one because the table uses a normal touch panel.

PDH (Personal Digital Historian) [7] is a tabletop system for collaborative
work. The information is laid out according to the annotation of time, place,
and so on. Participants visualize the folder hierarchy by using Hyperbolic Tree
[8].

ARTHUR [10] is the tool for structuring a 3D model of the round table. The
users have a high-resolution see-through head mounted display, and manipulate
by using tangible interfaces and hand gestures. Because the users can see the
same virtual objects and other participants at the same time, this system is
efficient for collaboration.

Sunburst [9] is a radial, space-filing visualization for the file/directory hier-
archy. Keeping the context, this visualization can focus the peripheral parts of
the hierarchy that are generally difficult to examine in hierarchy structure vi-
sualization. While this system shows the meta-information of file size, file type,
and so on, our system displays the content of the files.
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One of advantages of our system is that it allows multiple interactions because
of using computer vision technology. Another advantages of our system is that
it provides three layout methods in order to visualize and search a large number
of files.

8 Conclusion

This paper described layout and interaction methods for a large number of files
on a round tabletop display system. We proposed three different layout methods:
sequential, classification, and spiral layout.
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Abstract. This paper presents a new interactive teleconferencing sys-
tem. It adds a ‘virtual’ camera to the scene which can move freely in
between multiple real cameras. The viewpoint can automatically be se-
lected using basic cinematographic rules, based on the position and the
actions of the instructor. This produces a clearer and more engaging view
for the remote audience, without the need for a human editor.
For the creation of the novel views generated by such a ‘virtual’ cam-
era, segmentation and depth calculations are required. The system is
semi-automatic, in that the user is asked to indicate a few corresponding
points or edges for generating an initial rough background model. Next
to the static background and moving foreground also multiple indepen-
dently moving objects are catered for. The initial foreground contour is
tracked over time, using a new active contour. If a second object ap-
pears, the contour prediction allows to recognize this situation and to
take appropriate measures. The 3D models are continuously validated
based on a Birchfield dissimilarity measure. The foreground model is up-
dated every frame, the background is refined if necessary. The current
implementation can reach approx 4 fps on a single desktop.

1 Introduction

We are witnessing a quickly growing interest in systems for teleconferencing and
tele-teaching (see e.g. [1]). Most approaches however involve a major (hardware)
investment and use dedicated conferencing rooms, permanently staffed with a
video crew. Moreover they still rely on hand editing of the video streams. What
we envision is kind of the opposite. We target an intuitive and low-cost telecon-
ferencing system which can operate in a semi or even fully automatic mode. The
setup only needs a desktop computer and a few low-end static cameras placed
around an instructor, in a regular conferencing room. New interpolated views of
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the scene are synthesized between the real camera viewpoints. As such a ‘virtual’
camera is created, that can move freely between the real cameras in the scene.
The system can automatically select a good viewpoint depending on the position
and the actions of the instructor, following cinematographic rules. The basic as-
sumption for our system to work is that there is one major foreground object,
e.g. the main instructor. The background is assumed quasi static. As otherwise
this would pose too stringent constraints to its use, the system also can deal
with ‘secondary’ independently moving objects, such as a person passing by or
an object of the background being moved.

This said we’re not the first nor the only one focusing on low-cost conferenc-
ing systems. However most research in this area covers one-to-one conferencing,
instead of one-to-many tele-teaching. Mostly two persons are sitting behind their
desks and communicate to each other over a network. Billinghurst et al. [2] de-
veloped such a system which presents to a user an animated face of her/his
conversation partner. This system is implemented as augmented reality and re-
quires a head mounted display. As such, the user is free to move, but still is
seriously hindered by the wearable display. Later (see the work in [3]) this sys-
tem was modified towards the use of a desktop interface. More recently, Criminisi
et al. [4] developed an algorithm for gaze correction in such a setup. A camera
is mounted at both sides of a computer screen, and as such a stereo pair is
formed. The algorithm used is an accelerated version of scanline based dynamic
programming. The stereo maps are used to generate an interpolation of the per-
son’s upper body. More recently they extended this system by taking opacity
effects at the object’s border into account [5]. The major differences with the
system we propose, is that we target ‘tele-presenting’. The user is offered the
possibility to give a remote presentation in a regular conference room and is
not locked in front of his desktop. The recorded video, is automatically edited
on-the-fly and transmitted to a remote audience.

The generation of depth maps at high speeds is a crucial sub-step of our
algorithm. Only recently, the computation of dense depth maps in real time
has become feasible without dedicated hardware (see e.g. [6, 7] ). In [6] a plane
sweeping algorithm is described, while Ansar et al. [7] use bilateral filtering.
Assembly level optimizations using special extensions of the CPU instruction
set (such as MMX) are also used extensively [8]. In contrary to these algorithms,
we rather use a coarse to fine strategy to calculate the depth. First a bounding
volume is determined. A more accurate depth measurement is obtained by a
global approach. Small artifacts are removed and opacity effects at the borders
of the foreground object are taken into account. A balanced use of both GPU
and CPU underlies the implementation.

The outline of the rest of the paper is as follows. Section 2 gives a general
overview of the system. The interactive part of our pipeline is covered in 3, while
section 4 focuses on the on-line interpolation. Experimental results are presented
in 5, and section 6 concludes the paper.
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Fig. 1. Overview of the system, working with two input cameras. Processing comprises
an interactive and an on-line part. The on-line processing pipeline is executed for every
frame

2 System Overview

Our setup comprises an interactive and an on-line part, which is executed au-
tomatically for every frame. (See also the overview in fig. 1) The input to our
system are the video-streams coming from two or more static cameras. They are
calibrated off-line and on beforehand. This is done using auto calibration (see
e.g. [9, 10]). The search for robust multi frame correspondences, necessary for the
calibration, is facilitated by illuminating the scene with a laser pointer. Before
starting the on-line mode it is up to the user to provide ‘clean’ images of the
background only. During a short ‘learning phase’, the algorithm for background
segmentation collects a robust initial version of the reference background. These
reference images will be updated during the on-line phase with the parts of the
background which remained static. Finally the user is asked to select a limited
number of corresponding points or lines based on an intuitive user interface, in
order to build up an initial background model. This step is not strictly necessary,
but yields better results for complicated scenes.

During the on-line phase, the output of the segmentation algorithm points
us to places where the images did change. In contrast to most other approaches,
this change is no longer attributed a priori to the moving foreground object.
By use of tracking of the foreground contour, changes in the background or so-
called intermediate layers are set apart from the real moving foreground (e.g.
the person). This will be explained in more detail in the subsequent sections. As
soon as all ‘layers’ –background, intermediate and foreground– are identified, the
foreground contours are matched between the different cameras based on their
outlines only. Finally pixel based matching based on this initialization, and a
validation step using the Birchfield dissimilarity refine the updated model, and
add opacity effects where required. The information from the intermediate layers
is taken into account by updating both the texture and the 3D structure of the
background model. The newly computed models are rendered as the resulting
interpolation.
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3 Interactive Background Modeling and Refinement

An initial background model is generated interactively based on the reference
background images. Alternatively it can be constructed automatically, with a
plane sweep algorithm. However this technique is error prone if the background
scene contains strong depth discontinuities, or only limited texture. We prefer
to ask the user to bootstrap the algorithm, and visually validate the outcome.
As such we can overcome this otherwise hard to solve problem in a robust way.

Besides modeling the overlapping parts of the input frames, the background
model is extrapolated. This allows to show a background rendering for all inter-
mediate camera positions, and not only for those looking at the common part
of the scene in the input cameras.

3.1 Initial Background Model

At startup the user launches the system in background learning mode. After a
few seconds acquisition stops, and s/he is presented an interface with all different
views of the cameras lined up. Fig. 2 illustrates this interface for two cameras.
Both straight edges and salient corner points are detected and indicated on all
images. If the user selects a feature – corner point – by use of the mouse, the
corresponding epipolar line is drawn in all other views. If no feature is present
in a 10 × 10 region around the selection, the point itself is used.

Fig. 2. Left: The Delaunay triangulation for the currently selected point pairs. Quickly
zooming in allows for faster and more accurate operation. Middle: Corners and edges
visualized on the reference backgrounds. Right: Partially completed rough 3D model,
seen from an extrapolated viewpoint at the left side of the inputs

Now the user has to select roughly the same point in one of the other views.
This approximative correspondence is projected orthogonally to the correspond-
ing epipolar line, and a local search for the best epipolar match is started. By
back projecting the 3D point corresponding to the initial selection, we obtain
a possible correspondence in all views. This allows for matching over all views
simultaneously. To this end we maximize the sum of the normalized cross cor-
relations (see eq. 1) for a window around the image point selected and those in
all other views.

NCC =
∑

I1(x, y) ∗ I2(x, y)√∑
I2
1 (x, y) ∗∑ I2

2 (x, y)
(1)

Modeling based on corresponding points only, would require a rather large
amount of selections to obtain an acceptable model. As a consequence this would
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be too time consuming. Therefore the user can also select corresponding edges.
Since they typically originate from salient textures or from depth discontinuities,
they are especially apt to be used as constraints for the model. The correspon-
dences for the points on two edges are confined to those which obey the epipolar
geometry. In other words, only the ‘common part’ of the edges between two
views are used. All matched points or edges are indicated on the input images
to avoid multiple selections.

During selection, after each user interaction a constrained Delaunay triangu-
lation is computed. The point selections serve as corner points for the triangles,
the lines are constraints for the triangulation which are not allowed to be di-
vided. As such we obtain a 3D mesh of the background, which is incrementally
improved by selecting more points or edges. The model update and selection
is done at interactive rates, there are no noticeable delays to the user. The 3D
locations of all features are calculated by triangulation, based on the camera
matrices known from the calibration. This incrementally improved model can be
manipulated and is covered with the input textures. It provides visual feedback
to the user, who decides when to stop modeling or where to add or remove points.
In the next stage this model will automatically be refined where necessary.

3.2 Refinement Using the Birchfield Dissimilarity

Visualization is not the only purpose of projecting the images on the model. At
the time of rendering the model, also the Birchfield distance [11] is computed
for the blended textures. This distance D(xL, xR) is a pixel-wise dissimilarity
measure that is insensitive to image sampling. It will be used as a robust measure
for the accuracy of the model. Where the model is correct, the textures map
perfectly and the dissimilarity will be small. Where the dissimilarity is large, the
model still has to be improved.

Fig. 3. The Birchfield dissimilarity measure between two intensity images IL and IR

The pixel-wise calculation of this dissimilarity is implemented as a fragment
program, which is executed on the graphical board (GPU) during rendering.
Consider two corresponding pixels xL and xR, resulting from the left and a right
camera image. First the linearly interpolated intensities IL

− and IL
+ halfway

between xL and its neighbors are determined, as illustrated in fig. 3. Let ILmin =
min(IL

−, IL
+, IL

0) and ILmax = max(IL
−, IL

+, IL
0), with I0 the intensity of the

pixel under consideration, then D(xL, xR) is defined as follows:
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D1 = max(0, IL
0 − IRmax, IRmin − IL

0)

D2 = max(0, IR
0 − ILmax, ILmin − IR

0)

D(xL, xR) = min(D1, D2)

(2)

We now investigate (CPU based) the mean Birchfield dissimilarity for ev-
ery triangle of the model, computed on the GPU. If the average for a triangle
exceeds a threshold (empirically chosen), this triangle is automatically ‘subdi-
vided’. Corner points within the triangle are searched, and are matched. Again
the matching is restricted by the epipolar geometry, moreover it is acceptable to
confine the search range to a depth window around the range spanned in space
by the triangle. The resulting matched corners are all added to the Delaunay
triangulation. The matching itself is based on a normalized cross correlation
(NCC) computed over 3x3 windows (see eq. 1).

This subdividing is iterated, and each time the Birchfield dissimilarity is
recomputed and checked. After the first iteration the subdivision is extended.
Next to adding matched corner points, a new vertex is created on the middle of
each edge. This means we split every triangle into four smaller triangles, if good
correspondences can be found. Since these new vertices are located on joined
edges of two triangles, both triangles are subdivided. This gives the mesh the
possibility to represent finer scene structures where they are needed. This is done
without risking to diverge towards an incorrect solution as the rough outline of
the geometry largely constrains its large scale behavior.

3.3 Model Extrapolation

The model built with the help of the user interface, is determined by the point-
and edge-correspondences provided by the user. As such this model will be lim-
ited to the area which is visible in more than one camera image. However, we
want to obtain a realistic background model that is as complete as possible.
Therefore it is necessary to extrapolate the model to allow for background ren-
dering at all camera positions.

To this end a least squares regression is used to obtain the planar continuation
of the 3D mesh. A necessary set of points of the resulting plane are added to the
Delaunay triangulation. As a result the model is continuously extended for the
regions visible in only a single input camera.

During visualization the part of the model visible in the ‘virtual camera’ is
determined. For the regions on which more than one input texture project, the
textures are blended. The blending factor is gradually adapted for the position
of the virtual camera to compensate for intensity differences between the inputs.
In the extrapolated regions for which only one input texture is available, this
input is projected on the model and the brightness is adjusted locally during
the projection. This to integrate smoothly with the other parts of the model. A
visualization of such an extrapolated model is shown in fig. 4.
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Fig. 4. (a) The Delaunay triangulation obtained by selection within the area visible in
two cameras; (b) after the model extrapolation. (c) Partial model seen from a virtual
middle camera after the initial selection; (d) extrapolated model

4 On-Line Interpolation and Model Update

As stated before, a segmentation algorithm based on background differencing is
used to extract moving objects from the scene. In earlier work [12] it is demon-
strated how the contour information of one segmented object can be matched on
a shape basis only. This delimits a bounding volume in 3D which is considerably
smaller than what is retrieved by the visual hull, for the same segmentation.
Hence further pixel based matching will be more robust. More details on the
matching algorithms and how to deal with opacity effects at the object’s bor-
ders can be found in [12].

Fig. 5. (a) Input image (b) Segmentation result shown in white. Foreground contour
from previous frame visualized on top. (c-d) Initial contour is moved towards new
position. (e) Contour is fit to the contour of the segmentation. (f) Final foreground
segmentation

However, the situation becomes more complicated if there are multiple mov-
ing objects and/or persons. Suppose a person walks behind another person. Log-
ically this action will be segmented out (see fig. 5 (a,b)). However, in one camera
view the segmented areas will be ‘connected’ sooner than in the other due to the
depth discontinuity. At that moment the contours will have different outlines in
the different cameras (for one camera still separate objects are found, while for
the other a single undivided foreground is detected), and shape based matching
of the contours will fail. Such a failure can also happen in case of a partial occlu-
sion of one object by another in more than one view. It is more effective to treat
both objects separately even if they occlude each other. The secondary moving
objects will be referred to as ‘intermediate layers’. Iterative contour matching
over time and a new active contour allow to separate the foreground from this
layer in a robust way.
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4.1 Foreground Contour Extraction

As we focus on processing streaming video, the movement of the person between
subsequent frames is assumed small. As such the outline of the foreground con-
tour will be very similar over time, until a partial occlusion occurs. To this end
the Hausdorff distance between each contour and its predecessor in the previous
frame is computed. If this distance suddenly peaks, we discard the current con-
tour, as it will not be the outline of the current foreground object. Additional
measures should be taken.

The foreground contour – represented as list of pixels – extracted in the pre-
vious frame, denoted by Ct−1 = {pi, i = 1...K}, will be used as an initialization
of the contour in the current frame, Ct = {qj , j = 1...L}. However this old con-
tour should first be aligned to its correct location in the current frame. To this
end we propose an algorithm inspired by ICP:

– build a set of closest point pairs (pi, qj) between the two contours. The search
is confined to a 10x10 neighborhood around the pi.

– compute the translation T, that minimizes the sum of squared distances∑
dist(pi − T, qj)2. The error measurement dist, is the Euclidean distance.

– apply T to Ct−1

Repeat the above steps until convergence. As at the onset of an occlusion the
contours will still greatly have the same outline (only where foreground and
intermediate layer join a mismatch occurs), this algorithm moves the old contour
to its new location in a few iterations. The consecutive transformations applied
are shown in fig. 5 (b-d).

If the translated contour nearly coincides with the boundary of the new
segmentation (max 3 pixel is used as a threshold in our tests) the latter is used,
otherwise the translated historic contour is retained. (see fig. 5 (e)).

Finally the shape of the contour is refined starting from this initial rough
location. This mainly allows us to deal with non rigid transformations of the
foreground object, which typically occur in case of a person. To this end an active
contour (or snake) is applied which jointly minimizes bending and curvature
and pulls the outline towards the edges. The result is that we get an exact
contour for the foreground, and effectively separate it from the intermediate
layer. Something which could not be done using the mere segmentation result.
Now, after contour matching, classical pixel based matching across all views can
determine the geometry of the foreground object.

4.2 Background Update

The remaining blobs, segmented out by the background differencing point us
to the intermediate layer. All of these are taken care of by a local update of
the background, in order to represent the changing scene. Locally the matching
process is repeated as before (see eq. 1), but based on the latest input images,
containing the moving objects. Further subdivision of triangles is done where
needed, as explained in subsection 3.2. All parts of the background which did
not change are used to update the background reference images.
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Fig. 6. The first two images are the inputs for the first frame. The other images show
several frames of an interpolation result. The virtual camera is located in the middle
of the baseline between the two input cameras

5 Results

Fig. 6 shows a set of shots from a sequence of interpolations obtained with only
two input video streams. The position of the virtual camera is taken exactly
in the middle of the baseline, as this is the position which is most challenging.
The more we move towards a real camera, the better the viewpoint and the
texture mask the errors. The baseline for this test was 1 m, while the person
is at approx. 2-3 m. The person is the main foreground object. He grabs a
part of the background (the book), manipulates it and places it back. During
this series of operations the book and the changing background become part of
the intermediate layer. The geometry is continuously updated. Note that the
object behind the book is correctly visualized after its removal. Without the
automatic background texture and geometry update this would not be possible.
Some ghosting around the foreground is caused by the flicker introduced by the
lamps.

The background 3D model generated only by the user selection of features,
still contains some artifacts. These faults are detected by calculating the Birch-

Fig. 7. (a) Model built from features selected by the user. (b) Birchfield dissimilarity
per pixel from this model. White areas have a high dissimilarity value. (c) Refined
model. (e) Birchfield dissimilarity after automatic model refinement
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field dissimilarity between the textures projected on the model, as can be seen in
fig. 7 [left]. Fig. 7 [right] illustrates the first automatic refinement of this model
and the Birchfield dissimilarity recalculated after this refinement.

6 Conclusion

We propose an algorithm for novel view synthesis, which is amenable to real time
processing. The system strives to offer a high level of automation, in combination
with feedback and interaction to the user where necessary. This comprises the
user’s validation of the (initial) background model, and his/her help to bootstrap
the system. As we only need a desktop computer and a set of low end consumer
grade cameras the system is very low cost, without losing the added value offered
by video stream editing.

In this work we mainly focus on an integrated system. We also propose a
possible solution to the segmentation and tracking problem in case multiple
independently moving/changing objects are present within the scene. A more
engaging and compelling tele-presence can result, without an extended cost.
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Abstract. This paper presents a method to segment the hand over complex back-
grounds, such as the face. The similar colors and texture of the hand and face
make the problem particularly challenging. Our method is based on the concept
of an image force field. In this representation each individual image location con-
sists of a vector value which is a nonlinear combination of the remaining pixels
in the image. We introduce and develop a novel physics based feature that is able
to measure regional structure in the image thus avoiding the problem of local
pixel based analysis, which break down under our conditions. The regional image
structure changes in the occluded region during occlusion. Elsewhere the regional
structure remains relatively constant. We model the regional image structure at all
image locations over time using a Mixture of Gaussians (MoG) to detect the oc-
cluded region in the image. We have tested the method on a number of sequences
demonstrating the versatility of the proposed approach.

1 Introduction

The task of segmenting the hand over complex backgrounds such as the face is a chal-
lenging problem. The difficulty lies in the fact that the hand and head are similarly
colored/textured regions. A necessary step for many HCI applications such as gesture
recognition, pointing interfaces, hand pose recognition, and event detection is a reliable
hand segmentation. Sign language recognition methods also need to first segment the
hand over complex boundaries, such as the face. Some events like coughing, eating,
and taking medication could be more easily recognized by segmenting the hand from
the face. In short there are many applications that could benefit from having a robust
segmentation of the hand over complex backgrounds.

We propose two main contributions in segmenting the hand over complex back-
grounds such as the face. First we develop a new feature based on the force field im-
age [10]. The force field image uses concepts from force field transformations used in
physics. Basically, each image location is represented by a vector value which is a non-
linear combination of all other pixels in image. Their approach focused on a possible
feature space for recognition of faces and uses single frames. The feature we develop is
the distance traveled by test pixels placed in the force field. Our novel feature is able to
model regional structural changes in the image over time. Local methods (pixel based)
cannot resolve the occlusion because there is little change in local color when similarly
colored objects occlude each other. Regional structure in the image does change when
the hand occludes the face, although local pixel colors in the occluding region remain
largely the same before and during the occlusion. By quantifying the regional structural
change in an image over time we can resolve this kind of occlusion.
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The second contribution is in presenting a method that is able to model our newly
developed feature response over time and capture where and when occlusion is happen-
ing using a Mixture of Gaussians (MoG) modeling paradigm. We also clarify several
concepts from [10] and give more details in using this image representation. An exten-
sion of the force field computation to video data is also given.

Section 1.1 gives previous work. Section 2 provides details on the image represen-
tation. Section 3 shows how formulating the problem using MoG can aid the task of
segmenting the hand/face. Results are presented in Section 4, and then we conclude.

1.1 Previous Work

Much of the work in finding the hand in a complex background relies on colored mark-
ers [7] on the hands or requires the hand to be the only skin object in view [5]. Contour
based approaches [1] [9] [11] and other edge based methods [14] rely on good edges
separating the hand and head, which are often not present in such difficult occlusion.
Active contour approaches [1] [11] require the hand shape change to be small. Our
method has no such constraint. In [9], hand shape is estimated over a complex back-
ground by using a shape transition network with the attributes of contour, position, and
velocity. They use a simple template based approach and skin color segmentation to
find the hand during hand face occlusion. Their approach is sensitive to small changes
in lighting, different skin colors, and requires small differences in the 2D hand shapes.
Other color based approaches [3] [12] [14] would have difficulties in segmenting the
hand over face. In [12] body parts are tracked using Bayesian Networks but the condi-
tional probabilities are specified manually. Further, skin color is used to find the body
parts. In [8] examples are given handling a few frames of occlusion using shape and
color in a Bayesian framework, but it is unclear if it can withstand occlusion involving
hundreds of frames (as our approach does). In [18] hand tracking is performed using
eigen dynamics analysis, but the hand tracking system uses pretrained hand models. It
is unclear how person-independent these models are.

In [2], a method is presented which uses multiscale features to find the hand. Color
priors are used, requiring retraining for new people. This method will not work when
the face is present because of the stronger blobs and ridges on the face. [19] performs
well on segmenting hands, but the method requires that the hand cover a large portion
of the image. Our image sequences frequently have only part of the hand in the image.

An Elastic Graph Matching approach is given in [15], which uses color models
to find skin regions. It has problems when the illumination changes, as the skin color
model fails. Each training image requires manual labeling of at least 15 node points.
The approach has problems handling geometric distortions of the hand as does [16].
Our approach is not hand model based, so we do not have this limitation.

In [6] an approach is given that segments the hand from a complex background.
They localize the hand using motion information and map this region to a fovea vector.
The method does not extend to other people. There is significant change in hand size
which our method can cope with. Most model based approaches presented above fail in
the case where the hand is only partially visible in the image or for gestures not in the
database.
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Because of the similar colors of the hand and face, segmentation algorithms such as
[4] will generally either under or over segment the hand/face occlusion. In principle, one
can do tracking but then the question becomes how to initialize the tracking. Further,
tracking methods generally fail when tracking across similarly colored regions.

Background subtraction [13] will not work in segmenting the hand over the face
because even a slight movement of the head will trigger a large change of foreground
pixels. Further, supposing the head was relatively fixed, the underlying problem with
the RGB (and other color spaces) input domain is in the similarity of the head and
hands. These methods cannot distinguish between the head and hand colors. Most back-
ground subtraction methodologies operate on RGB or some other color space (i.e. the
input space is color information). When similarly colored objects, occlude each other
the individual pixel values in the region of occlusion give little information considered
individually because the objects are similarly colored. This presents difficulties for in-
dividual pixel based methods.

2 Potential and Force Images

We can define the smoothed potential at a given position, rj , with respect to position
ri, in image I as

Ei(rj) =
I(ri) + I ′(ri)
2 · |ri − rj | (1)

where rj is the image location in question and I(ri) is the image intensity at position
ri. I ′ represents the image intensity at the previous time instant. Because we are dealing
with video data, we introduce temporal smoothing into the force field representation to
account for spurious noise.

Equation 2 gives the potential energy for a particular image location. This compu-
tation is then performed for every location in the image. This gives the potential energy
image. The total potential energy at location rj is given by:

E(rj) =
∑
ri �=rj

Ei(rj) =
∑

ri �=rj

I(ri) + I ′(ri)
2 · |ri − rj | (2)

2.1 Force Fields

To find the force exerted by all pixels at a particular image location rj simply compute

F (rj) =
∑
ri �=rj

Ei(rj)
ri − rj

|ri − rj |2 =
∑
ri �=rj

I(ri) + I ′(ri)
2

ri − rj

|ri − rj |3 (3)

We can see that the force is a vector as it has magnitude and direction. These vector
fields will be very important in the image representation. The units of pixel intensity,
direction, and force are arbitrary as is the origin of the coordinate system. F (rj) is the
normalized vector at rj . Examples of the potential and force fields are shown in Fig-
ure 1. Since the force fields are two dimensional the magnitude and direction are shown
separately. The direction was quantized (for display purposes only) into 10 regions.
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Fig. 1. Potential and Force Vector Fields for various input frames. Input images are shown on the
top left. Potential image is next. Next is magnitude of the force field and the last contains the
direction (quantized) of the force field

2.2 Finding Potential Wells

Once the potential and force field images have been computed the well points(local
extrema) are computed. This is done in an iterative fashion. Unit test pixels are placed
uniformly (resulting in a rectangular grid of test pixels) throughout the image. They can
be placed at every pixel, every other pixel etc. They are placed in the field and serve
to capture the flow of the field. Suppose there are m test pixels t1, . . . , tm. Since the
position of each test pixel will change as it traverses the force field, we denote the initial
location of ti as ti,0. To find any ti,j apply the recursive equations:

ti,0 = (xi, yi)

ti,j = ti,j−1 + F (ti,j−1) (4)

Where F (x) is the normalized vector at x, which is computed as F (x) = F (x)
|F (x)| . Given

a unit test pixel starting point, ti,0, it goes through the force field until it stabilizes at
a well point, denoted as ti,N . Unit test pixels eventually reach stable points. In our
examples N=500. Convergence was always reached well before N=500, but we could
test for convergence to allow more than 500 iterations. The computation could be ended
earlier if convergence is reached. Iterations needed for convergence depends on image
size and the number of wells. Larger images or ones with fewer wells will need more
iterations, but 500 iterations was sufficient for the 1000’s of image we tested. Not all
ti end up at the same wells. The path that a test pixel takes is called a channel. It is
easy to see that once two test pixels reach a common point, they both travel the same
path from them on. Before deriving the distance traveled feature we would like to give
some intuition as to what information in the image the force field is capturing and why
it is useful in our problem domain. Equation 3 shows that the force field captures global
structure, technically. However since the effect on the field is proportional to 1

d2 the net
effect is that the force field captures regional image structure.

The potential image is a scalar at each pixel and it is a measure of the brightness
of that region. The force field is a vector at each pixel location. It measures properties
related to regional edge strength. It is not an edge detector, but it is related. The force
field measures regional edge like structure in the image. The potential wells are those
points in the force field where the net force is zero. Intuitively these are the points that
seek to position themselves in between the regional edge structures of the image. A well
equalizes the force (regional structure) around itself. See Figure 2 for an example of a
synthetic image demonstrating these ideas.
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(a) (b) (c) (d) (e)

Fig. 2. This is a synthetic image used to give some intuition of the force field representation. (a) is
the original image. (b) is the original image with the initial configuration of test pixels overlaid on
it. (c)-(d) show the movement of the test pixels through the force field after 50 and 200 iterations.
(e) shows the magnitude of the force field

The force field captures regional structure and we can model this regional structure
over time to detect structural changes in the image. Though the hand and head have
similar color and texture, by analyzing regional image structure we are able to capture
structural changes that are introduced when the hand enters the scene. We can see that
other methods monitoring pixel wise information are not enough because of the similar
texture of the hand and head. When the hand enters, the local structure would not change
(i.e. the pixel values remain largely the same), but there is useful regional structure
variation (we will show examples of this change in subsequent sections). We now detail
how we model this changing force field over time.

3 Developing New Image Feature

The structure of these field lines for a particular image sequence are relatively constant
until the hand (or anything else) enters the image. Once the hand enters a clear distur-
bance in the channels occurs in the region of occlusion. This hypothesis has been borne
out in experiments on thousands of video frames. It is consistent with the fact that the
force field is a measure of regional image structure. Figure 3 shows an example of this
phenomenon. It can be seen that most of the channels are stable before and during the
occlusion. We could show more examples, but due to space limitations, we will not. We
next demonstrate how to measure and quantify this changing force field.

Fig. 3. Channels before and during occlusion. Notice that a disturbance in the channels can be
seen in the lower left corner of the image, whereas the rest of the channels in the image are
relatively stable

If test pixels are placed uniformly in each image we can measure the variation a cer-
tain test pixel exhibits in the distance it travels to a potential well. Since these distances
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remain relatively constant when there is no disturbance in the image (i.e. no hand/face
occlusion), the distance that each test pixel travels can be modeled as a random variable
with Gaussian distribution. When the hand enters, the wells and the distances that the
test pixels travel will vary significantly. These will be the foreground channels, and they
are somewhat analogous to foreground pixels in background subtraction.

The reason this occurs is that when another object is introduced, it has its own set of
channels and wells. When the two objects merge, the channels and wells of both objects
interact with one another. Although the hand and face are similar in color, the potential
and force structure present in the image changes when another object enters the scene.
Using the MoG modeling technique we are able to measure and localize this change,
which allows us to find the boundary between the face and the hand. The distance from
a test pixel start location to its final well position can be measured by computing

d = |tj,0 − tj,N | (5)

This is the new distance traveled in a force field feature. Other distance measures such
as the arc length could be used. In any case, the distances the test pixels travel are
relatively constant until the hand enters the facial region. We model the face before
occlusion in terms of the distance traveled at each test pixel start location using a MoG.

Let us assume that in the first video frame for a particular test pixel tj : |tj,0−tj,N | =
X0. In the next video frame for the same test pixel location we can compute |tj,0 −
tj,N | = X1. Given the distance traveled history of a particular test pixel at location
tj : X0, X1, . . . , Xτ , we want to model this density as a mixture of K Gaussians. The
current distance traveled by tj , Xτ , at time τ , has probability

P (Xτ ) =
K∑

i=1

wi,τ
1√

2πσi,τ

e

−(Xτ −μi,τ )

2σ2
i,τ (6)

of belonging to the current model. wi,τ is the weight of the ith Gaussian, and μi,τ and
σi,τ are the mean and variance of the distribution all at time τ . If none of the Gaussian
distributions match for this particular location tj , the least likely distribution is replaced
by the new distance. The distribution’s mean is the distance traveled by tj , |tj,0 − tj,N |,
with the weight of this distribution set low. At each time instant the weights of the K
distributions are updated as

wi,τ = (1 − α)wi,τ−1 + α(Mi,τ ) (7)

with α set to a constant (learning rate) and Mi,τ being an indicator function which is
1 for the distribution that matched and 0 otherwise. The distribution i that matched the
current distance observation has its mean and variance updated as

μi,τ = (1 − ρ)μi,τ−1 + ρXτ (8)

σi,τ = (1 − ρ)σ2
i,τ−1 + ρ(Xτ − μi,τ )2 (9)

In our case ρ is set to a constant. For notational convenience we denote tju as the mean
of the distribution that matched for test pixel tj . Using this approach we are able to
model the distances traveled by each test pixel in a coherent manner. The next task is to
use these models to segment the hand from the face.
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3.1 Extracting the Hand

There are two steps needed to extract the hand. We must first identify whether or not
the frame has a hand in it. A good measure is when the maximally changing test pixel’s
distance from its distribution is much larger than its change in the previous frame. This
indicates a large change in the image. Concretely, we say the hand has entered when

tlμ − Xτ > 3 · (tlμ−1 − Xτ−1), (10)

where l = argmax
l

tlμ − Xτ , l = x (11)

tlμ is the mean of the distribution for tl, and Xτ is the current distance traveled obser-
vation (computed as |tl,0 − tl,N | for tl. tlμ−1 and Xτ−1 are the mean of the distribution
and observation for tl at the previous input frame.

The goal is to find the set H which is all the hand pixels. Initially set H ← tl,x, ∀x �

1 ≤ x ≤ N . This only gives one ti and corresponding channel. To get the full hand,
any test pixel which ended up at the same well is also assumed to be part of the hand.
Further, any test pixel whose well is within β pixels is assumed to be part of the hand.
Concretely, set

H ← H + ta,x, ∀a, x � |tl,N − ta,N | ≤ β, 1 ≤ x ≤ N (12)

These test pixels and corresponding channels taken together segment the hand re-
gion. Once the hand enters the head region, the distances test pixels travel will vary
greatly. This variation should not be learned, so the models are not updated after the
hand enters the head region. Figure 4 shows three frames of the found channel lines.
The final segmentation is achieved by finding the convex hull of this point set H and
drawing the hull. Other methods could be used to improve the resulting contour. The
full algorithm is given in Table 1. Detailed results are presented in Section 4.

Table 1. Overall Algorithm

For every frame
1. Compute force at every pixel using Equation 3
2. Place test pixels ti uniformly and ∀ti compute Equations 4 and 5
3. ∀tiUse Equations 6 - 9 to update online MoG models
4. Check for hand using Equations 10 and 11
5. If hand present, segment using Equation 12, find convex hull and display result

Fig. 4. Channels superimposed on hand region. These channels varied most from the previous
model. A convex hull algorithm could be used to fill in this hand region
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4 Results

Our method was tested on 14 sequences involving hand/face occlusion for a total of
1800 frames. Not all of these frames contained hand over face occlusion. Of course the
non-occlusion frames were needed in order to build the online distance models. Out of
the 1800 frames, roughly one half contained hand over face occlusion. The method was
successful under a variety of lighting conditions. We assume that the hand is initially
not present (which allows us to build the model). In order to allow translational invari-
ance and to have faster processing,we find the head region using [17] and only process
these regions. We model every 5th pixel in both directions for faster computation. More
samples would increase segmentation rates and the contour accuracy. Figures 5 and 6
show results of the hand segmentation on different input sequences. We should note
that in Figure 5 the head starts out frontal and then rotates to a half-profile position.
Our method is able to cope with this type of rotation, after which the model starts to
break down. Again to obtain the results we run a convex hull algorithm on the set H,
described in Section 3.1, and show the hull. The algorithm was always able to deter-
mine when the hand entered the image using the steps in Section 3.1. Figure 7 shows
a comparison between our proposed method, background subtraction [13], and mean
shift segmentation [4] respectively. Our method and [13] give pixel wise segmentation,
so comparison was straightforward and unambiguous. We felt it would be interesting to
compare against general methods because our approach does not use hand color/shape
to improve its decision, meaning it could possibly be applied in other contexts. Neither
of these two other methods were successful in segmenting the hand from the face.

Fig. 5. Hand Segmentation. This was a difficult sequence due to the large face rotation

Fig. 6. Hand segmentation results for three sequences. Row 1 shows channel lines superimposed.
Row 2 shows the convex hull. The sequence in Row 3 involves occlusion for over 300 frames
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Fig. 7. Segmentation results for our method (row 1), [13] (row 2) and [4] (row 3)

To quantify how well the algorithm performed we manually generated ground truth
segmentations for two sequences. Comparisons of our method to ground truth and back-
ground subtraction [13] are shown in Table 2. Comparison was made pixel wise. For
our method each pixel in the convex hull was counted as hand and each pixel outside
was counted as non-hand. The true positive percentages for every frame were added and
divided by the total number of frames. A similar method was used for the true negative
rate. Our method outperformed [13] in all cases. While [13] segmented part of the hand,
it found much of the head region as hand, indicated by the low true negative rate.

Table 2. True positive (TP) and true negative (TN) segmentation % for the specified sequences

Seq # # Frames Our Method TP % Method in [13] TP % Our Method TN % Method in [13] TN %
1 44 80.04 72.00 97.11 74.12
9 150 79.53 73.15 96.58 72.19

5 Conclusion and Future Directions

We have developed a method that is successfully able to segment the hand from the
face. From a high level the method succeeds because we developed an image feature
which is based on regional information. During occlusion of head and hand, local pixel
regions remain similar, but the regional image structure changes during the occlusion.
Our method detects this change and is able to recover the occluding region. Our main
contributions are in development of a novel feature: the distance traveled of a test pixel
in the image force field. And in modeling the distance traveled using a MoG, which
allowed us to capture occlusion information that is difficult to extract. We want to ex-
plore more the force field representation, and determine its limits in resolving occlusion.
Better methods of segmentation using the MoG model could be explored. It would be
useful to test how well the method resolves occlusion with other types of objects.
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Abstract. An approach to increase adaptability of a recognition system,
which can recognise 10 elementary gestures and be extended to sign
language recognition, is proposed. In this work, recognition is done by
firstly extracting a motion gradient orientation image from a raw video
input and then classifying a feature vector generated from this image to
one of the 10 gestures by a sparse Bayesian classifier. The classifier is
designed in a way that it supports online incremental learning and it can
be thus re-trained to increase its adaptability to an input captured under
a new condition. Experiments show that the accuracy of the classifier
can be boosted from less than 40% to over 80% by re-training it using
5 newly captured samples from each gesture class. Apart from having a
better adaptability, the system can work reliably in real-time and give a
probabilistic output that is useful in complex motion analysis.

1 Introduction

One of the challenges in building a system for sign recognition (and also gesture
recognition) is that inter- and intra- personal variation may lead to a poor
performance. In most situations, different signers may sign in different ways and
even the same signer may not sign in the same way all the time (see Figure 4). A
classifier that is capable to give a good classification result on one dataset may
not be able to give a good result on another set. This idea can be illustrated by
Figure 3 that shows an original decision boundary (the line in a lighter intensity)
can separate original positive and negative samples (‘×’ and ‘•’ in a lighter
intensity) properly but not for new samples (shown in a darker intensity).

Adaptability is therefore an essential property of a sign recognition system
applied on a wide range of users. Instead of training a recognition system using
all possible samples, it is sensible to train the system using a limited amount of
samples and then re-train it using online samples. As illustrated in Figure 3, an
updated decision boundary (the line in a darker intensity) could be estimated
based on some of the new samples in order to achieve a good classification result
on both new and original samples.

In the past decade, sign recognition was done by exploiting Hidden Markov
Models (HMMs). In [1], HMMs were directly applied to solve the problem and
their extensions such as parallel HMMs [2] and self-organizing HMMs [3] were

N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 170–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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also proposed to improve the performance. In addition, HMMs have also been
extended to perform adaptive gesture recognition [4].

Recently, the use of HMMs has been criticised. One major criticism is that us-
ing HMMs to recognise gesture requires large training sets (e.g. [5]) and this will
inhibit the growth of the vocabulary. In addition, recent HMMs design analyses
each sign as a whole without breaking it down into corresponding components
(e.g. [6]), making the model more complicated and reducing its extensibility. Al-
though recent works (e.g. [5, 6]) provide some alternative solutions to the sign
recognition problem and achieve an acceptable accuracy, they have not consid-
ered how to improve the adaptability of their recognition systems.

In this paper, an adaptive approach to recognise 10 primitive movements,
which can be considered as the building blocks in any sign language system, is
proposed. Motion recognition is done by exploiting motion gradient orientation
(MGO) images to form motion features and using a sparse Bayesian classifier
to map the features into their corresponding classes. The Bayesian classifier is
designed in a way so that it can be re-trained using online samples. The present
research has three main contributions. Firstly, by allowing online learning, the
adaptability and the accuracy of the recognition system are raised. Secondly, due
to the use of the Bayesian classifier, the final outcome is a probabilistic value,
which is useful in high-level inference processes that must maintain multiple
hypotheses. Thirdly, the classifier maintains a sparse model, which facilitates an
efficient use of computational resources and leads to a real-time performance.

2 Approach

As mentioned in the previous section, HMMs are not the only choice for per-
forming sign recognition and there are alternative solutions such as [5, 6]. This
paper extends the work of Derpanis et al. [6] to allow online training and clas-
sifying inputs captured under a wider range of conditions. The basic framework
and theory used will be described in the following sub-sections.

2.1 Framework

In [6], Derpanis et al. introduced the idea of breaking down signs into constituent
primitive movements with the aid of linguistic information (e.g. [7]). Sign lan-
guage recognition can then be considered as recognising the primitive movements
and the corresponding sequence. Derpanis et al. used simple and manually de-
fined mapping functions to map the motion data in time-series format into their
corresponding movement classes. Their work is thus difficult to be extended. In
this paper, we adopt their divide-and-conquer strategy but also exploit a general
recognition procedure to increase the extensibility.

This paper focuses on the hand motion classification problem (i.e. classifying
a given video sequence of hand motion into one of the movement primitives).
Motivated by [6], we have 10 primitive movements to be classified: (1) upward,
(2) downward, (3) rightward, (4) leftward, (5) toward signer, (6) away signer,
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Fig. 1. This figure shows the 10 primitive movements recognised by the proposed
system

(7) nod, (8) supinate, (9) pronate, and (10) circular. Figure 1 illustrates these 10
primitives. The classification scheme used will be presented next in sub-section.

2.2 Theory

Unlike recent works such as [5, 6] that are exploiting simple classification schemes,
this work is going to handle inter- and intra-personal variation through the use of
a powerful classifier. Among several state-of-the-art classifiers, a sparse Bayesian
classifier or Relevance Vector Machine (RVM) is used in the proposed system.

Compared with other state-of-the-art classifiers such as Support Vector Ma-
chine (SVM), the RVM classifier performs equally well in term of accuracy. In
addition, the final outcome of the RVM classifier is a probabilistic value instead
of a simple true-or-false answer. Furthermore, the sparsity of the model stored
by the RVM classifier ensures fast and efficient classification process, and this
implies the classifier can be implemented in computing devices with limited
memory storage such as Pocket PC or Smartphone.

RVM classifier is a simple binary classifier. Consider a training set that con-
sists of N motion feature vectors, {xn, tn}N

n=1. The problem of learning a bi-
nary classifier can be expressed as that of learning a function f so that the
input feature xn will map onto their correct classification label tn and the
probability of xn is classified as the target class (where tn = 1) equals to
σ(yn) = 1/(1 + e−yn)where yn = f(xn).

The function f can be written as a sparse model where (M � N) [8]:

f(xn) =
M∑

m=1

ωmφm(xn) + ω0 (1)

where ω = (ω0, ...ωM )T are the weights and φm(xn) = K(xn,xm) with K(·, ·) a
positive definite kernel function (where Gaussian Kernel with width 1 is used in
the proposed system) and xm an example (or a relevance vector) from the train-
ing set. Under the RVM framework where hyperparameters α = {α0, ..., αM} are
introduced, learning f from the training data means inferring ω from the data
t = {t1, ..., tN} such that the posterior probability over the weights, p(ω | t, α),
is maximised. Given A = diag(α0, α1, ..., αN ), Bnn = σ{yn}[1 − σ{yn}] and Φ
is the N × (N + 1) design matrix, the optimal values of the weights can be esti-
mated by using an iterative procedure [8], where the inverse of a Hessian matrix
at ‘most probable’ weight (ωMP ), ∇∇ log p(t, ω | α)|wMP = −(ΦTBΦ+A) have
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to be computed for a current, fixed values of α at each loop. The values of α
can be inferred from the training data such that the marginal likelihood p(t | α)
is maximised. The iterative procedure for estimating ω and α is repeated until
some suitable convergence criteria are satisfied.

In a batch-learning approach, all training examples will be considered as
relevance vectors at the initial stage and the irrelevance vectors will be ‘pruned’
after re-evaluation of α in each iteration. In other words, every αi has a finite
value at the beginning and the Hessian matrix to be computed in each estimation
loop has a size of (N + 1)× (N + 1) initially, where N is the number of training
samples. Since inversion of Hessian matrices is involved in the learning algorithm,
the overall training complexity is O(N3). This implies that if the initial sample
size is huge, the learning algorithm may take a long time to converge.

According to [9], we can also start with an initially small model and sequen-
tially ‘add’ relevance vectors to increase the marginal likelihood. Considering the
marginal likelihood, or equivalently, its logarithm L(α):

L(α) = log p(t | α) = −1
2
[N log 2π + log | C | +tTC−1t] (2)

with C = B−1 + ΦA−1ΦT . From the analysis given in [9], C can be rewritten
in this way: C = B−1 +

∑
m �=i α−1

m φmφT
m + α−1

i φiφ
T
i = C−i + α−1

i φiφ
T
i , where

C−i is C without basis vector i. L(α) can be therefore rewritten as:

L(α) = L(α−i) +
1
2
[log αi − log(αi + si) +

q2
i

αi + si
] (3)

where si = φT
i C−1

−i φi and qi = φT
i C−1

−i t. From [9], estimation of α, which gives
maximum value of marginal likelihood, can be computed directly from:

αi = s2
i

q2
i
−si

, if q2
i > si,

αi = ∞, if q2
i ≤ si,

(4)

The implication of this evaluation method for α is that we can make discrete
changes to the model while we are guaranteed to increase the marginal likelihood.
This means we can start from an initially small model and test the ‘relevance’ of
each new input vector i sequentially. When vector i is in the model (i.e. αi < ∞)
but q2

i ≤ si, then vector i should be removed (i.e. αi set to ∞); When vector i
is not in the model (i.e. αi = ∞) and q2

i > si, vector i should be added (i.e. αi

set to a certain optimal value). Classification model is thus built incrementally.
By adopting this incremental training approach, computational complexity

is O(M3) where M is the number of relevance vectors and M � N . In other
words, the training time can be reduced dramatically. In addition, this learning
approach allows any new input to be evaluated on the fly and to be added to
the model if certain criteria are fulfilled. This property can be used to develop
an online adaptive recognition system where online training is needed.
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3 Implementation Details

The hand motion recognition problem addressed in this paper can be divided
into 2 tasks, namely feature extraction and classification.

3.1 Feature Extraction

Extraction of MGO: In this work, a motion gradient orientation (MGO) im-
age is extracted directly from a raw video input and transformed to a motion
feature vector that contains necessary spatial-temporal information. MGO im-
age was proposed by Bradski and Davis [10] to explicitly encode image changes
introduced by motion events. The MGO is computed from a motion history im-
age (MHI) and a motion energy image (MEI) [11]. MHI is an image that shows
moving edges where the recency of a motion is represented by intensity level;
MEI is a binary image that indicates where the current moving edges (moving
regions) are; Pixels in MGO encode the change in orientation between nearest
moving edges shown on the MHI and the region of interest is defined as the
largest rectangle covering all bright pixels in MEI. The MGO therefore contains
information about where and how a motion occurred. The MGO obtained within
the region of interest will be rescaled to a standard size, which is 200 × 200 in
the proposed system. Typical MGO images corresponding to the 10 primitive
movements used are illustrated in Figure 2.

Fig. 2. This figure illustrates the MGO images corresponding to the 10 primitive
movements classified by the proposed system

Dimension Reduction: In order to reduce the necessary number of training
samples (which is proportional to the dimension size), dimension reduction is
done on the training MGO images that can be potentially very large in image
size (i.e. the dimension size). Principal Component Analysis (PCA) is used in the
proposed system to reduce the dimension of the MGO images. By performing
PCA on all training MGO images, the eigenvalues indicate that the first 12
components provide an adequate summary of all the images, which account for
95% of the variation. Thus, the first 12 eigenvectors are chosen as the new basis
functions for converting any new incoming MGO image into a new feature vector.
Finally, normalization is done to give a final feature vector (x) with zero mean
and standard deviation of one in all dimensions.
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3.2 Learning and Classification

Binary Classification: As explained in the previous section, given a training
set {xn, tn}N

n=1, a RVM classifier can be trained to separate positive and negative
samples in an iterative manner through maximising the marginal likelihood.
Under the incremental learning scheme, each sample in the training set will be
tested sequentially to determine whether it will be included in or excluded from
the classification model. Decision boundary will be updated once sample vector
is added to or removed from the model.

Multi-class Classification: The RVM classifier can be extended to a multi-
class classifier by using the “one-versus-others” method. Since we have a total of
10 classes of motion, 10 independent RVM classifiers are constructed and each
of them is trained to separate one class of data from all others. After all the
classifiers are trained, the system can be tested by feeding a sample to all the
classifiers. In practice, suppose this sample belongs to class i, the classifier which
is trained to separate class i data from the others will give the largest output.

Re-training Procedure: If a new sample of class i is used to re-train the
RVM classifiers, this sample will become a positive sample for i−th RVM classi-
fier while become a negative sample for the other classifiers. All RVM classifiers
will be trained separately by evaluating the relevance of this new sample. This
sample will be either added to or ignored by the classification model of each
RVM classifier. The decision boundary of each classifier will also be re-evaluated
accordingly. In other words, if the new sample is quite different from the previ-
ously trained samples due to inter- and intra-personal variation, the classification
model and the associated decision boundary will be adjusted to account for its
influence. This implies adaptability can be achieved through the integration of
a new training sample to the previously trained model.

4 Experiments

The proposed method was implemented using unoptimised C++ code and the
OpenCV library. All the experiments described were executed on a P4 2.4GHz
computer with 1G memory.

4.1 Experiments on Synthetic Data

We first utilise a set of synthetic data to illustrate how incremental training
scheme improves the adaptability. An initial training set consisted of 2 classes,
where class I (denoted by ‘×’ in a lighter intensity) was sampled from a mixture of
2 Gaussians while class II (denoted by ‘•’ in a lighter intensity) was sampled from
a mixture of 3 Gaussians. Similarly, a training set for re-training the classifier
consisted of 2 classes. Class I was still sampled from the same distribution as
those used to generate the initial training set. Class II, however, was sampled
from a mixture of 3 Gaussians whose means are shifted upward compare to the
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Gaussian mixture that generated the initial training set (see Figure 3). The
sample points for re-training are shown in a darker intensity.

Firstly, the initial training set was used to train a RVM classifier using the in-
cremental learning scheme. Afterwards, the re-training set was used to re-train
the RVM classifier. The training results are illustrated in Figure 3. The plot
shows that the decision boundary adjusts (bends upwards) automatically to sep-
arate the ‘re-training’ samples from different classes. Another RVM classifier was
trained by these training sets using batch learning. Similar decision boundary
was achieved but the training time was longer (7344 ms vs. 766 ms).

Fig. 3. This figure illustrates the training result on the initial training set (denoted
by lighter ‘×’ and ‘•’) by a RVM classifier using incremental learning and also the
re-training result on the re-training set (denoted by darker markers) by the same RVM
classifier. The decision boundary obtained from training using the initial training set
is shown as a lighter line while the decision boundary obtained from training using the
re-training set is shown as a darker line. Relevance vectors are shown circled

4.2 Experiments on Real Data

In this part, we will use video data to evaluate the performance of the RVM
classifier using incremental learning. Both training and testing data were video
captured under arbitrary room conditions (with various backgrounds and light-
ing). The video was captured by a webcam with a resolution of 320× 240 pixels
at 15 frames per second. In each video clip, the signer signs one of the ten prim-
itive movements as described in Section 2. On average, each movement, which
is manually segmented, lasts between 2 and 5 seconds.

We have five pairs of training set and testing set. Different pairs are captured
under different conditions. Each dataset has a size of 300 (where each class of
movement contributes to 30 samples). The first pair captured the motion of a
signer (subject I) who signs the primitive movements using hand shape ‘B5’ (see
Figure 4). The second, third and fourth pairs captured the motion of the same
signer who signs using hand shape ‘B’, to sign in a faster speed, and to sign with
a slight deviation in direction respectively. The fifth pair captured the motion
of another signer (subject II) who signs in the same way as subject I did in
the first pair. The difference in capturing conditions between these datasets and
their corresponding MGO images generated are illustrated in Figure 4.
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Fig. 4. This figure illustrates the difference in capturing conditions between the
datasets used and the corresponding MGO images produced. In all cases, the sign-
ers sign the ‘Upward’ gesture

The training set from the first pair was exploited to train a RVM classifier
and a SVM classifier (both have the same kernel configuration). The testing
sets of all five pairs of dataset were used to evaluate the performance of these
classifiers. The training and testing results are summarised in Table 1.

Table 1. This table shows the training and testing results on all testing sets by a
SVM classifier and a RVM classifier

SVM incremental RVM

Training Time (ms) 2156 885906

Average No. of Vectors retained 140 3

Classification Time (ms) 15.8 4.2

Accuracy on Accuracy% (Unrecognised%)

Set 1 (normal) 0.80 (0.18) 0.93 (0.03)

Set 2 (hand shape) 0.04 (0.96) 0.21 (0.68)

Set 3 (hand speed) 0.05 (0.95) 0.29 (0.57)

Set 4 (direction) 0.06 (0.93) 0.32 (0.53)

Set 5 (subject) 0.12 (0.87) 0.39 (0.59)

The training sets of the remaining four pairs (i.e. Set 2, 3, 4, and 5) were
exploited to re-train the RVM classifier. We used different amount of training
data per each pair to re-train the classifier (sample sizes used are 10, 20, 50, 100,
300). The testing sets of all five pairs were used to test the system. The training
and testing results are shown in Table 2.

4.3 Discussion

The experimental results illustrate three main advantages of using incremental
RVM for motion recognition. Firstly, a RVM classifier maintains a sparse model
and can thus perform classification with a minimum amount of online computa-
tional resources. Experiments show that the RVM classifier maintains a sparser
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Table 2. This table shows the training and testing results of using RVM classifiers
that are re-trained by a different amount of training samples

No. of Re-training Samples 10 20 50 100 300
per Training Set

Training Time (ms) 18922 27796 81344 140281 1085406

Average No. of RVs 4.8 6.0 7.4 9.2 12.5

Accuracy on Accuracy% (Unrecognised%)

Set 1 (normal) 0.90 (0.03) 0.92 (0.02) 0.90 (0.03) 0.90 (0.04) 0.91 (0.03)

Set 2 (hand shape) 0.35 (0.3) 0.72 (0.11) 0.88 (0.05) 0.93 (0.01) 0.94 (0.01)

Set 3 (hand speed) 0.54 (0.18) 0.66 (0.10) 0.82 (0.04) 0.91 (0.02) 0.93 (0.01)

Set 4 (direction) 0.47 (0.22) 0.63 (0.09) 0.78 (0.04) 0.86 (0.04) 0.89 (0.02)

Set 5 (subject) 0.54 (0.25) 0.82 (0.12) 0.91 (0.04) 0.92 (0.02) 0.92 (0.02)

model than the SVM classifier (3 RVs vs. 140 SVs). The time taken for perform-
ing RVM classification on a feature vector is shorter (4.2 ms by RVM vs. 15.8
ms by SVM). Since the time taken for extracting the motion features is 34.3 ms,
the total time for performing RVM classification on video data is 38.5 ms (i.e.
26 frames per second). That is to say, the system can run in real-time.

Secondly, a RVM classifier returns a probabilistic result, which can provide
information about uncertainty and facilitate high-level inference. Experiments
demonstrate that the number of unrecognisable samples is higher if a SVM classi-
fier is used. This is mainly because the RVM classifier has a better generalisability
than the SVM classifier. Apart from this, the relatively poor classification result
of SVM may also be due to the non-probabilistic nature of its output. Under
the “one-versus-others” scheme, if all SVM classifiers give ‘0’ response, the sys-
tem will conclude that the input is not recognisable. In contrast, RVM classifiers
give probabilistic values as output, the final decision will be made based on these
values and will seldom give unrecognisable results with the exception that all
probabilistic values are too low.

Thirdly, a RVM classifier allows incremental learning and thus has a higher
adaptability to new samples captured under different environment. Experiments
indicate that re-training a RVM classifier using a small amount of new samples
is sufficient to achieve a fairly high accuracy when the classifier is applied on
unseen data, which is captured under a different condition. In other words, re-
training of a RVM classifier enables a better adaptability of the classifier towards
variations, such as changes in hand shape, moving speed and moving direction,
and even different person.

Experiments also reflect the main problem of using RVM classifiers is its
relatively long training time compare with SVM classifiers. Incremental learning,
however, does shorten the learning time (7344 ms by batch learning vs. 766 ms
by incremental learning). In addition, it is worth spending less than 2 minutes
on re-training a RVM classifier with a small amount of new samples to achieve
a better classification result.



Real-Time Adaptive Hand Motion Recognition 179

5 Conclusion

A new method is proposed to increase the adaptability of a gesture recognition
system that can be extended to sign language recognition. The proposed method
performs better than recently used methods in three ways. Firstly, through the
use of an incremental learning approach, newly available samples can be ex-
ploited to re-train the classifier that has been trained by an initial training set.
Such an online re-training scheme can increase the adaptability of the classifier
to input captured under a new condition. Secondly, by using a sparse Bayesian
classifier that has relatively better generalisability and sparsity, the final classi-
fication result is comparable to other motion recognition methods and the result
can be obtained with a minimum amount of online computational resources. Fi-
nally, the probabilistic nature of the Bayesian classifier implies that the proposed
method can be applied in complex motion analysis that must maintain multi-
ple hypotheses. A further investigation of how to extend this work to analyse
complex motion and how to further reduce the training time is under progress.
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Abstract. We propose a new general approach to the problem of head pose es-
timation, based on semi-supervised low-dimensional topographic feature map-
ping. We show how several recently proposed nonlinear manifold learning 
methods can be applied in this general framework, and additionally, we present 
a new algorithm, IsoScale, which combines the best aspects of some of the 
other methods. The efficacy of the proposed approach is illustrated both on a 
view- and illumination-varied face database, and in a real-world human-
computer interface application, as head pose based facial-gesture interface for 
automatic wheelchair navigation. 

1   Introduction 

Head pose estimation, the automatic estimation of the orientation of the head relative 
to a camera-centered coordinate system, is a problem of both theoretical and practical 
importance. Especially, automatic head pose estimation is expected to be a major 
feature of future human-computer interfaces. The number of degrees of freedom for 
head pose variation is limited to three (three angles of rotation: pan, tilt and roll) and 
can be relatively easily characterized by simple 3D Euclidean geometry. In other 
words, the set of all facial images generated by varying the orientation of a face is 
intrinsically a three-dimensional manifold (ignoring or compensating for other types 
of image variation like changes in scale, illumination etc.), which however is embed-
ded in image space of a much higher dimensionality. Efficient classical techniques for 
dimensionality reduction like principal component analysis (PCA) or multidimen-
sional scaling (MDS) are available and can be used for learning a parameterization 
along the underlying degrees of freedom of the manifold when it is embedded line-
arly in the observation space. Recently, a number of new techniques like Isomap [1], 
Laplacian eigenmaps [2], etc. have been proposed, which seem to be able to recover 
the intrinsic geometric structure of nonlinearly embedded data manifolds. Although 
these have been used mainly for visualization, and to a lesser extent for classification, 
it seems reasonable to expect that the low-dimensional topographic (i.e. geometric 
structure-preserving) feature maps they generate could be useful also for pose estima-
tion. Thus, the general approach we propose here is to formulate pose estimation as a 
two-step process: (1) “unfold” the curved high-dimensional data manifold into a lin-
ear and low-dimensional topographic map; (2) assuming step (1) has successfully 
removed the non-linearity from the data, now it would be easy to learn a linear pose-
parameter map using only a few training samples (provided the resulting embedding 
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is low-dimensional, of course). This would make possible a new semi-supervised 
approach to pose estimation, which would be important if supervised data (in the 
form of view-labeled training samples) is not readily available or costly/inconvenient 
to obtain. On the other hand, learning a linear map from the discovered low-
dimensional embedding space to pose-parameter space, and testing it on new unseen 
samples, would provide valuable feedback about the quality of the found embedding 
(i.e. how successful has been the method in unfolding the nonlinear manifold), in a 
more objective way than the one usually done for visualization. 

Previous work on head pose estimation from 2D images (which we limit our atten-
tion to) can be broadly categorized into two groups: (1) shape-based geometric analy-
sis (e.g. [3]) where head pose is deduced from geometric information like configura-
tions of facial landmarks; and (2) template matching (e.g. [4]-[5]) based on nearest 
neighbor classification with texture templates. Our work is most strongly related to 
the approach in [6], however, as outlined above, we extend this approach utilizing 
more powerful nonlinear methods for topographic mapping, which make possible the 
semi-supervised approach, advocated here. Additionally, as the proposed method 
does not rely on tracking geometric features like eyes, etc., which can be difficult to 
detect for example for near-profile poses, it is able to achieve reliable pose estimation 
for much larger view range. In section 3, we illustrate the efficacy of the proposed 
approach on a view- and illumination-varied face data and in real-world human-
computer interface application, as pose estimation-based facial-gesture interface for 
automatic wheelchair navigation. 

2   Methods 

In this section first we briefly review several alternative methods for low-dimensional 
topographic mapping, which can be used in the general framework outlined in the 
Introduction for semi-supervised head pose estimation. In section 2-4 we propose a 
new method, IsoScale, which seems to be more suitable for our task (this will be 
discussed and experimentally demonstrated below and in section 3), but we will need 
the other methods both for the sake of comparison later, and to gradually introduce 
some relevant ideas and notation. 

2.1   The Linear Subspace Method 

First we briefly describe the PCA-based linear subspace model for 3D view represen-
tation, which is similar to [6]. The training data necessary to build the head pose 
model is represented by the centered data matrix ),...,( 1 avNav xxxxX −−= , where 

ix is the ith training sample and 
=

−= N
i iav N

1
1 xx . We assume that N training face 

samples are available, including samples from all available views from several differ-
ent subjects. A linear subspace model t

P ),...,,( 21 yyyY =  is constructed using the 
top P principal components (PCs) obtained by PCA by solving the eigenvalue prob-
lem YYXX =t . Thus, a parameterization of a certain view sample ix  by Y (i.e. by 

linear projection) is given by )( avii xxYq −= , or more generally by matrix 
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YXQ = for the training samples and TT YXQ = for the test samples, where TX con-
tains the test samples (e.g. a multi-view face sequence for a subject whose samples 
have not been used in the process of building the model). Next, a linear pose parame-
ter map F, relating sample ix to view angle i  can be learned from FQ= , 

where ),...,( 1 N= is a matrix of the view angles of the training samples. F can be 

computed by singular value decomposition (SVD) to determine the inverse of tQ :  

tt
QQQ

t UWVF 1−=  (1) 

where t
QQQ UWV is the SVD of tQ . Then, the unknown view angles T  of the test 

samples in TX  are given by 

TTT FYXFQ ==  (2) 

The vector space spanned by the subset of the PCs in Y corresponding to the P largest 
eigenvalues provides an optimal parameterization (in the sense of optimal L2 recon-
struction error of the training samples) of the multi-view face representations. How-
ever, a limitation of this approach is that PCA can only recover the true structure of 
linear manifolds, while the ambient geometry of view-varying face (or other complex 
3D objects) manifolds can be highly folded or curved in the high-dimensional input 
space. This in turn would put limitations on the precision of the resulting model, 
especially if a large view range is considered (as we are interested here). Thus we 
expect that the more sophisticated methods described in the following 3 subsections 
might be able to better recover the intrinsic geometric structure of the nonlinearly 
embedded data manifolds, i.e. to “unfold” the curved high-dimensional data into a 
linear and low-dimensional topographic map from where linear pose-parameter maps 
can be learnt similar to (1)-(2) above. 

2.2   Topographic Mapping with LPP 

Locality Preserving Projection (LPP) has been proposed recently [7] as a linear ap-
proximation of the Laplacian Eigenmap (LE) method [2], a local approach (as it at-
tempts to preserve the local geometry of the data) to the nonlinear dimensionality 
reduction problem. LE has a number of desirable properties for low-dimensional 
embedding (see [2] for details), however, as pointed out in [7] it does not produce a 
transformation function, i.e. there is no way how to map data points which are not in 
the training data set into the dimensionality-reduced space. LPP overcomes this prob-
lem, by finding an optimal linear approximation to the eigenfunctions of the Laplace-
Beltrami operator on the manifold. The subspace model W is constructed as a matrix 
with column vectors the eigenvectors corresponding to the smallest l eigenvalues of 
the generalized eigenvector problem  WXDXWXLX tt = , where D is a diagonal 

matrix of the column sums of the similarity matrix )exp(
2
tjiij xxS −−= , t is a free 

parameter and L=D-S is the Laplacian matrix. The optimal l-dimensional embedding 
is thus given by XWQ t= for the training samples and T

t
T XWQ = for the test 

samples. The pose parameter maps can be computed analogously to (1)-(2). 
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2.3   Topographic Mapping with Isomap 

Isomap (from isometric feature mapping) [1], is essentially a Multidimensional Scal-
ing (MDS) [10] operating on the pairwise geodesic distance matrix GD  built from 

the input data samples ix . A neighborhood graph G is determined, such that G would 

contain edge ji xx  iff jx is one of the k nearest neighbors of ix . Then the shortest 

paths in G are computed for all pairs of data points, e.g.  

)},(),(),,(min{),( jkGkiGjiGjiG dddd xxxxxxxx +=  (3) 

and the shortest paths between any two samples are represented in matrix 
)},({ jiGG d xxD = .Then classical MDS is applied to GD  to find a lower-

dimensional embedding of the data that best preserves the manifold’s intrinsic ge-
ometry. First, the inner-product matrix HAHB = is calculated, where 

)},(5.0{ 2
jiGd xxA −= , and tN 11IH 1−−=  is the centering matrix. Next, the eigen-

vectors iv , corresponding to the top positive l eigenvalues iλ  of B are found and the 

required l-dimensional embedding is given by the matrix t
ll ),...,( 11 vvR ⋅⋅= λλ , 

i.e. the ith column of R gives the coordinates of sample ix  in the newly found l-
dimensional subspace. 

We can define a pose parameter map F relating view angles  to their corre-
sponding embedded training samples R in a similar way as in (1), 

tt
RRR

t UWVF 1−= , where t
RRR UWV is the SVD of tR . However, in order to find 

an equation similar to (2) for the test samples, first we must find a way how to embed 
the test samples in the subspace created by the model, i.e. to calculate TR  from TX . 
Such a technique exists for MDS (see [8] for a proof) and can be applied to Isomap in 
a similar way: 

T
ttt

T
t

T DRRRDRR ))((
2
1)(

2
1 1# −==  (4) 

where ),...,( 1 MT ddD =  is given by 

Ni
t

i diag ,)( dRRd −=     .)),(),...,,(( )(
2

1)(
2

,
t

NiTGiTGNi dd xxxxd =     (5) 

In (5), Ni,d  is a column vector of the squared geodesic distances between the ith test 

sample (i: 1…M) and each of the training samples. Now the unknown view angles 

T  of the test samples in TX  can be calculated as TT FR= . 

2.4   Topographic Mapping with Neuro/Isoscale 

An alternative well-known topographic method is Sammon mapping [9], which 
minimizes a ‘stress’ measure which explicitly embodies the topographic constraint: 

>
−=

N

i

N

ij
ijij ddE 2* )(  (6) 
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where jiijd xx −=*  are the inter-point distances in the original data space, and 

jiijd yy −=  the inter-point distances in the lower-dimensional map. One impor-

tant disadvantage of this mapping is that test data cannot be added to the map without 
an expensive re-optimization of the stress on the whole dataset. To alleviate this prob-
lem, Neuroscale has been proposed in [10], which defines a nonlinear map between 
the data space and the output map using a radial basis functions (RBF) net. An effi-
cient algorithm called “shadow targets” has been proposed [10] to train the model. 
Hypothetical target values it  

≠
−

−
+=

ij
ji

ij

ijij
ii d

dd
yt )(2

*

yy  (7) 

are defined, where the second term is the partial derivative iE y∂−∂ /  of the stress (6). 
For a fixed set of targets T, the weights of the RBF net can be calculated as 

TW #= , where # is the pseudo-inverse of the basis functions activations matrix 
)( ijij xφ= . Since the estimated targets are not fixed, a model trust region based 

iterative algorithm is used to re-estimate the targets and update the weights at each 
step. The mapping obtained in this way is still unsupervised in the sense that there is 
no specific target information for the map coordinates, only a relative measure of 
target separation between each pair of points. However, if available, supervised in-
formation can be used by this method to influence the topology induced by the train-
ing data by replacing *

ijd  in (6) with ijijij sd ααδ +−= *)1( , where ijs  is the absolute 

target separation, and α ( 10 ≤≤ α ) controls the degree of supervisory information in 
the mapping. Neuroscale has also been used mainly for visualization, with Euclidean 
metric to measure the distances between data points.  

However, for the task at hand we propose to modify Neuroscale to use the geo-
desic distance, expecting to achieve an effect similar to that of Isomap extending 
nonlinearly MDS (which in Euclidean metric is equivalent to PCA). In this case, the 
geodesic distances in the data space can be calculated as in (3) above. To discriminate 
between the cases when the Euclidean, and when the geodesic distance is used, we 
will call the latter method IsoScale. Thus, IsoScale can be considered a hybrid be-
tween Isomap and Neuroscale, combining those aspects of each, which we expect to 
be useful for our task, namely: (a) the geodesic distance would be better suited to 
recover the intrinsic geometric structure of the nonlinearly embedded head pose 
manifolds than the Euclidean, resulting in a lower-dimensional embedding (we need a 
very low-dimensional embedding if we are to be successful with our semi-supervised 
approach, which has to use as few training samples as possible ); (b) at the same time 
IsoScale has the following important advantages over Isomap: (1) since the RBF net 
additionally learns a nonlinear map between the image data space and the output map, 
there is no need to compute distances to all training samples at test time as in Isomap, 
which would be prohibitive for real-time implementations; (2) IsoScale permits effi-
cient sequential implementation, so practically there is no limit on the training set size 
used to find (in unsupervised way!) the low-dimensional embedding, while Isomap 
has to store the whole distance matrix in memory, i.e. cannot handle more than a few 
thousand face images. 
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Fig. 1. Examples of faces with different pan, tilt, and illumination values from the dataset used 
in the first experiment 

3   Experiments 
Here we report some experimental results obtained by implementing the semi-
supervised approach described in the previous two sections. First we start with a 
(relatively difficult) toy problem. We test the plausibility of the proposed approach on 
the same dataset which has been used in [1] for visualization (note that visualization 
is a different problem, and a much easier one than pose estimation), which is 
downloadable from http://isomap.stanford.edu/datasets.html. This dataset contains 
about 700 face images (see Fig.1 for an example) with known pan, tilt and illumina-
tion direction values: pan changes in the range ( °− 75 ,..., °75 ), tilt in the range 

( °−10 ,..., °10 ), and illumination direction in the range (105 ,..., 255). We adopt the 
following experimental procedure: we use each of the methods in section 2 in turn to 
find in an unsupervised way a low-dimensional embedding using 90% of all data 
(randomly selected), and then learn a linear pose-parameter map using respectively 
only 10 or 60 randomly selected samples. Then we test the accuracy of the pose esti-
mation on the remaining 10% of the data which has been set aside as test samples. 
This procedure is repeated several times and the average of the obtained results are 
reported in Fig. 2 for the case of 3-dimensional embedding. 
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10 training samples     60 training samples  

Fig. 2. Average absolute errors obtained by each of the following methods: PCA (black), LPP 
(red), Isomap (green), Neuroscale (blue) and  Isoscale (yellow). For each set of bars with the 
same color, the first represents pan error, the second tilt error and the third illumination direc-
tion error. The left part is obtained for semi-supervised learning using only 10 training samples, 
and the right one with 60 training samples 

As can be seen from Fig. 2, the geodesic distance-based methods, Isomap and 
IsoScale achieve the best performance, with only 10 training samples being sufficient 
to obtain satisfactory error rates. Note that when only 10 training samples are used, 
IsoScale has error rate which is about 2 times smaller than Neuroscale.  
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Next we describe one typical example of a real-world application, where the pro-
posed semi-supervised approach is particularly advantageous. We have developed a 
facial gesture interface, using the pose estimation method proposed in this paper, for 
automatic wheelchair navigation for people with paralyzed limbs suffering from cere-
bral palsy. Such people are unable to use their hands to control their wheelchairs, but 
can use some simple head movement based gestures instead. A stereo camera is 
mounted on the wheelchair, which monitors the head movements of the subjects. In 
this way, it is easy to obtain a lot of (even hours of) raw image data from the camera, 
but obtaining view-labeled supervised data is difficult, as magnetic sensors providing 
the supervised information have to be attached to the head of the subjects, and this 
can be done only for a limited period of time (ideally only once). In Figs. 3-6 we 
illustrate how IsoScale can be used in a semi-supervised mode to learn a low-
dimensional embedding from about 50000 faces video stream taken in different envi-
ronments (indoors and outdoors, under different illumination conditions, etc.), fol-
lowed by learning a linear map to pose-parameter space using only a small view-
labeled subset of the data. Different combinations of pan and tilt angles are used to 
encode a facial gesture interface able to reliably detect signals for controlling the 
motion of the wheelchair, e.g. “left”, “right”, “start”, “stop”, “back”, left/right rota-
tions, menu for choosing speed, etc. By careful observation of the range and type of 
head motions available to people with cerebral palsy, we designed a state transition 
graph diagram which is used to generate a control decision based on the continuously 
estimated head pose information. When the wheelchair is in a certain state, a transi-
tion to a different state is possible only if a suitable head pose is detected. The set and 
range of valid head poses which can be accepted in a certain state are chosen to 
minimize the possibility of wrong interpretation. 

 

Fig. 3. Several frames from a video sequence obtained from the camera mounted on the wheel-
chair (ordinary office environment) 

4   Conclusion 
In this paper we have proposed a new general approach to the problem of head pose 
estimation, based on semi-supervised low-dimensional topographic feature mapping, 
which is expected to find application in situations in which the larger part of the 
available data is not accompanied by supervised information, or even in extreme 
cases when we have only a few labeled samples. As the proposed method relies on 
finding a topography-preserving low-dimensional embedding of the highly-
dimensional input data in an unsupervised way, we have shown how several recently 
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proposed nonlinear manifold learning methods can be applied in this context, while 
additionally we have presented a new algorithm, IsoScale, which is especially suit-
able for the task at hand as discussed in detail in section 2-4 and experimentally dem-
onstrated in section 3. A further advantage of the proposed method compared e.g. to 
feature tracking based pose estimation methods is that this method does not rely on 
detecting/tracking geometric features like eyes, nose, etc., which can be difficult to 
detect/track for example for near-profile poses or fast gesture movements, therefore, 
the proposed method is able to achieve reliable pose estimation for much larger view 
range. Furthermore, as no domain knowledge is used, the method would be useful for 
any 3D object pose estimation, not limited to faces. 

 

Fig. 4. Trajectories of true (red) and predicted (blue) views obtained by IsoScale for the facial 
gesture test sequence in Fig. 3, with pan (top) and tilt (bottom) measured in degrees 

 

Fig. 5. Several frames from a video sequence obtained from the camera mounted on the wheel-
chair (outdoor environment) 
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Fig. 6. Trajectories of true (red) and predicted (blue) views obtained by IsoScale for the facial 
gesture test sequence shown in Fig. 5, with pan (top) and tilt (bottom) measured in degrees 
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Accurate and Efficient Gesture Spotting via
Pruning and Subgesture Reasoning
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Abstract. Gesture spotting is the challenging task of locating the start
and end frames of the video stream that correspond to a gesture of inter-
est, while at the same time rejecting non-gesture motion patterns. This
paper proposes a new gesture spotting and recognition algorithm that is
based on the continuous dynamic programming (CDP) algorithm, and
runs in real-time. To make gesture spotting efficient a pruning method
is proposed that allows the system to evaluate a relatively small num-
ber of hypotheses compared to CDP. Pruning is implemented by a set
of model-dependent classifiers, that are learned from training examples.
To make gesture spotting more accurate a subgesture reasoning process
is proposed that models the fact that some gesture models can falsely
match parts of other longer gestures. In our experiments, the proposed
method with pruning and subgesture modeling is an order of magnitude
faster and 18% more accurate compared to the original CDP algorithm.

1 Introduction

Many vision-based gesture recognition systems assume that the input gestures
are isolated or segmented, that is, the gestures start and end in some rest state.
This assumption makes the recognition task easier, but at the same time it limits
the naturalness of the interaction between the user and the system, and therefore
negatively affects the user’s experience. In more natural settings the gestures of
interest are embedded in a continuous stream of motion, and their occurrence
has to be detected as part of recognition. This is precisely the goal of gesture
spotting: to locate the start point and end point of a gesture pattern, and to
classify the gesture as belonging to one of predetermined gesture classes. Com-
mon applications of gesture spotting include command spotting for controlling
robots [1], televisions [2], computer applications [3], and video games [4, 5].

Arguably, the most principled methods for spotting dynamic gestures are
based on dynamic programming (DP) [3, 6, 7]. Finding the optimal matching
between a gesture model and an input sequence using brute-force search would
involve evaluating an exponential number of possible alignments. The key ad-
vantage of DP is that it can find the best alignment in polynomial time. This is
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Fig. 1. Pruning (a,b): example dynamic programming table for matching input stream
(x axis) to a model gesture for the digit “6” (y axis). Likely observations are represented
by black cells in the table (a). The cells remaining after pruning (b). In this example
87% of the cells (shown in white) were pruned. Subgesture reasoning (c): example false
detection of the digit “5”, which is similar to a subgesture of the digit “8”

achieved by reducing the problem of finding the best alignment to many subprob-
lems that involve matching a part of the model to parts of the video sequence.
The main novelty of our method is a pruning technique that eliminates the need
to solve many of these subproblems. As a result, gesture spotting and recog-
nition become both faster and more accurate: faster because a smaller number
of hypotheses need to be evaluated; more accurate because many of the hy-
potheses that could have led to false matches are eliminated at an early stage.
In Figure 1(b) the number of hypotheses evaluated by the proposed algorithm
is proportional to the number of black pixels, and the number of hypotheses
that are evaluated by a standard DP algorithm but are pruned by the proposed
algorithm is proportional to the number of white pixels.

A second contribution of this paper is a novel reasoning process for decid-
ing among multiple candidate models that match well with the current portion
of the input sequence. Comparing the matching scores and using class specific
thresholds, as is typically done [3, 6], is often insufficient for picking out the right
model. We propose identifying, for each gesture class, the set of “subgesture”
classes, i.e., the set of gesture models that are similar to subgestures of that class.
While a gesture is being performed, it is natural for these subgesture classes to
cause false alarms. For example, in the online digit recognition example depicted
in Figure 1(c), the digit “5” may be falsely detected instead of the digit “8”,
because “5” is similar to a subgesture of the digit “8”. The proposed subgesture
reasoning can reliably recognize and avoid the bulk of those false alarms.

2 Related Work

Gesture spotting is a special case of the more general pattern spotting problem,
where the goal is to find the boundaries (start points and endpoints) of patterns
of interest in a long input signal. Pattern spotting has been applied to different
types of input including text, speech [8], and image sequences [6].

There are two basic approaches to detection of candidate gesture boundaries:
the direct approach, which precedes recognition of the gesture class, and the in-
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direct approach, where spotting is intertwined with recognition. Methods that
belong to the direct approach first compute low-level motion parameters such as
velocity, acceleration, and trajectory curvature [5] or mid-level motion param-
eters such as human body activity [9], and then look for abrupt changes (e.g.,
zero-crossings) in those parameters to find candidate gesture boundaries.

In the indirect approach, the gesture boundaries are detected using the recog-
nition scores. Most indirect methods [3, 7] are based on extensions of Dynamic
Programming (DP) algorithms for isolated gestures (e.g., HMMs [10] and DTW
[11]). In those methods, the gesture endpoint is detected when the recognition
likelihood rises above some fixed or adaptive [3] threshold, and the gesture start
point can be computed, if needed, by backtracking the optimal DP path. One
such extension, continuous dynamic programming (CDP), was proposed by Oka
[7]. In CDP, an input sequence is matched with a gesture model frame-by-frame.
To detect a candidate gesture, the cumulative distance between them is com-
pared to a threshold.

After a provisional set of candidates has been detected, a set of rules is
applied to select the best candidate, and to identify the input subsequence with
the gesture class of that candidate. Different sets of rules have been proposed in
the literature: peak finding rules [6], spotting rules [12], and the user interaction
model [13].

One problem that occurs in practice but is often overlooked is the false de-
tection of gestures that are similar to parts of other longer gestures. To address
this problem [3] proposed two approaches. One is limiting the response time by
introducing a maximum length of the nongesture pattern that is longer than the
largest gesture. Another, is taking advantage of heuristic information to catch
one’s completion intentions, such as moving the hand out of the camera range or
freezing the hand for a while. The first approach requires a parameter setting,
and the second approach limits the naturalness of the user interaction. We pro-
pose instead to explicitly model the subgesture relationship between gestures.
This is a more principled way to address the problem of nested gestures, which
does not require any parameter setting or heuristics.

3 Gesture Spotting

In this section we will introduce the continuous dynamic programming (CDP)
algorithm for gesture spotting. We will then present our proposed pruning and
subgesture reasoning methods that result in an order of magnitude speedup and
18% increase in recognition accuracy.

3.1 Continuous Dynamic Programming (CDP)

Let M = (M1, . . . , Mm) be a model gesture, in which each Mi is a feature vector
extracted from model frame i. Similarly, let Q = (Q1, . . . , Qj, . . .) be a continuous
stream of feature vectors, in which each Qj is a feature vector extracted from
input frame j. We assume that a cost measure d(i, j) ≡ d(Mi, Qj) between



192 Jonathan Alon, Vassilis Athitsos, and Stan Sclaroff

two feature vectors Mi and Qj is given. CDP computes the optimal path and
the minimum cumulative distance D(i, j) between the model subsequence M1:i

and the input subsequence Qj′:j , j
′ ≤ j. Several ways have been proposed in

the literature to recursively define the cumulative distance. The most popular
definition is:

D(i, j) = min{D(i − 1, j), D(i − 1, j − 1), D(i, j − 1)} + d(i, j). (1)

For the algorithm to function correctly the cumulative distance has to be
initialized properly. This is achieved by introducing a dummy gesture model
frame 0 that matches all input frames perfectly, that is, DMg

(0, j) = 0 for all
j. Initializing this way enables the algorithm to trigger a new warping path at
every input frame.

In the online version of CDP the local distance d(i, j) and the cumulative
distance D(i, j) need not be stored as matrices in memory. It suffices to store
for each model (assuming backtracking is not required) two column vectors: the
current column colj corresponding to input frame j, and the previous column
colj−1 corresponding to input frame j − 1. Every vector element consists of the
cumulative distance D of the corresponding cell, and possibly other useful data
such as the warping path length.

3.2 CDP with Pruning (CDPP)

The CDP algorithm evaluates Eq. 1 for every possible i and j. A key observation
is that for many combinations of i and j, either the feature-based distance d(i, j)
or the cumulative distance D(i, j) can be sufficiently large to rule out all align-
ments going through cell (i, j). Our main contribution is that we generalize this
pruning strategy by introducing a set of binary classifiers that are learned from
training data offline. Those classifiers are then used to prune certain alignment
hypotheses during online spotting. In our experiments, this pruning results in
an order of magnitude speedup.

The proposed pruning algorithm is depicted in Algorithm 1. The input to the
algorithm is input frame j, input feature vector Qj, a set of model dependent
classifiers Ci, and the previous sparse column vector. The output is the current
sparse column vector.

The concept of model dependent classifiers Ci that are learned from training
data offline, and are used for pruning during online spotting is novel. Different
types of classifiers can be used including: subsequence classifiers, which prune
based on the cumulative distance (or likelihood); transition classifiers, which
prune based on the transition probability between two model frames (or states);
and single observation classifiers, which prune based on the likelihood of the
current observation. In our experiments we use single observation classifiers:

Ci(Qj) =
{

+1 if d(i, j) ≤ τ(i)
−1 if d(i, j) > τ(i) , (2)

where each τ(i) defines a decision stump classifier for model frame i, and is
estimated as follows: the model is aligned, using DTW, with all the training
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Algorithm 1. The CDPP algorithm

examples of gestures from the same class. The distances between observation i
and all the observations (in the training examples) which match observation i
are saved, and the threshold τ(i) is set to the maximum distance among those
distances. Setting the thresholds as specified guarantees that all positive train-
ing examples when embedded in longer test sequences will be detected by the
spotting algorithm.

In order to maximize efficiency we chose a sparse vector representation that
enables fast individual element access, while keeping the number of operations
proportional to the sparseness of the DP table (the number of black pixels in
Fig. 1(b)). The sparse vector is represented by a pair < ind, list >, where ind is a
vector of pointers of size m (the model sequence length), and is used to reference
elements of the second variable list. The variable list is a singly linked list, where
each list element is a pair that includes the cumulative distance D(i, j) and the
index i of the corresponding model frame. The length of list corresponds to the
number of black pixels in the corresponding column in Fig. 1(b).
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We note that in the original CDP algorithm there is no pruning, only lines
5-10 are executed inside the while loop, and i is incremented by 1. In contrast,
in CDPP whenever the classifier outputs −1 and a hypothesis is pruned then i
is incremented by an offset, such that the next visited cell in the current column
will have at least one active neighbor from the previous column.

Algorithm 1 is invoked separately for every gesture model Mg. For illustration
purposes we show it for a single model. After the algorithm has been invoked
for the current input frame j and for all the models, the end-point detection
algorithm of Sec. 3.3 is invoked.

3.3 Gesture End Point Detection and Gesture Recognition

The proposed gesture endpoint detection and gesture recognition algorithm con-
sists of two steps: the first step updates the current list of candidate gesture
models. The second step uses a set of rules to decide if a gesture was spotted,
i.e., if one of the candidate models truly corresponds to a gesture performed by
the user. The end point detection algorithm is invoked once for each input frame
j. In order to describe the algorithm we first need the following definitions:

– Complete path: a legal warping path W (M1:m, Qj′:j) matching an input
subsequence Qj′:j ending at frame j with the complete model M1:m.

– Partial path: a legal warping path W (M1:i, Qj′:j) that matches an input
subsequence Qj′:j ending at the current frame j with a model prefix M1:i.

– Active path: any partial path that has not been pruned by CDPP.
– Active model: a model g that has a complete path ending in frame j.
– Firing model: an active model g with a cost below the detection acceptance

threshold.
– Subgesture relationship: a gesture g1 is a subgesture of gesture g2 if it is

properly contained in g2. In this case, g2 is a supergesture of g1.

At the beginning of the spotting algorithm the list of candidates is empty.
Then, at every input frame j, after all the CDP costs have been updated, the
best firing model (if such a model exists) is considered for inclusion in the list
of candidates, and existing candidates are considered for removal from the list.
The best firing model will be different depending on whether or not subgesture
reasoning is carried out, as described below. For every new candidate gesture we
record its class, the frame at which it has been detected (or the end frame), the
corresponding start frame (which can be computed by backtracking the optimal
warping path), and the optimal matching cost. The algorithm for updating the
list of candidates is described below. The input to this algorithm is the current
list of candidates, the state of the DP tables at the current frame (the active
model hypotheses and their corresponding scores), and the lists of supergestures.
The output is an updated list of candidates. Steps that involve subgesture rea-
soning are used in the algorithm CDPP with subgesture reasoning (CDPPS)
only, and are marked appropriately.
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1. Find all firing models and continue with following steps if the list of firing
models is nonempty.

2. CDPPS only: conduct subgesture competitions between all pairs of firing
models. If a firing model g1 is a supergesture of another firing gesture model
g2 then remove g2 from the list of firing models. After all pairwise com-
petitions the list of firing models will not contain any member which is a
supergesture of another member.

3. Find the best firing model, i.e., the model with the best score.
4. For all candidates gi perform the following four tests:

(a) CDPPS only: if the best firing model is a supergesture of any candidate
gi then mark candidate gi for deletion.

(b) CDPPS only: if the best firing model is a subgesture of any candidate gi

then flag the best model to not be included in the list of candidates.
(c) If the score of the best firing model is better than the score of a candidate

gi and the start frame of the best firing model occurred after the end
frame of the candidate gi (i.e., the best firing model and candidate gi

are non-overlapping, then mark candidate gi for deletion.
(d) If the score of the best firing model is worse than the score of a candidate

gi and the start frame of the best firing model occurred after the end
frame of the candidate gi (i.e., the best firing model and candidate gi

are non-overlapping, then flag the best firing model to not be included
in the list of candidates.

5. Remove all candidates gi that have been marked for deletion.
6. Add the best firing model to the list of candidates if it has not been flagged

to not be included in that list.

After the list of candidates has been updated then if the list of candidates
is nonempty then a candidate may be ”spotted”, i.e., recognized as a gesture
performed by the user if:

1. CDPPS only: all of its active supergesture models started after the candi-
date’s end frame j∗. This includes the trivial case, where the candidate has
an empty supergesture list, in which case it is immediately detected.

2. all current active paths started after the candidate’s detected end frame j∗.
3. a specified number of frames have elapsed since the candidate was detected.

This detection rule is optional and should be used when the system demands
a hard real-time constraint. This rule was not used in our experiments.

Once a candidate has been detected the list of candidates is reset (emptied), and
all active path hypotheses that started before the detected candidate’s end frame
are reset, and the entire procedure is repeated. To the best of our knowledge the
idea of explicit reasoning about the subgesture relationship between gestures, as
specified in steps 2, 4a, and 4b of the candidates update procedure and step 1
of the end-point detection algorithm, is novel.
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Fig. 2. Palm’s Graffiti digits [14]

Fig. 3. Example model digits extracted using a colored glove

4 Experimental Evaluation

We implemented Continuous Dynamic Programming (CDP) [7] with a typical set
of gesture spotting rules. In particular, we used a global acceptance threshold
for detecting candidate gestures, and we used the gesture candidate overlap
reasoning described in Sec. 3.3. This is the baseline algorithm, to which we
compare our proposed algorithms. The proposed CDP with pruning algorithm
(CDPP), is implemented as described in Sec. 3.2, with the same gesture spotting
rules used in the baseline algorithm. The second proposed algorithm, CDPP with
subgesture reasoning (CDPPS), includes the additional steps marked in Sec. 3.3.

We compare the baseline algorithm and the proposed algorithms in terms of
efficiency and accuracy. Algorithm efficiency is measured by CPU time. Accuracy
is evaluated by counting for every test sequence the number of correct detections
and the number of false alarms. A correct detection corresponds to a gesture that
has been detected and correctly classified. A gesture is considered to have been
detected if its estimated end frame is within a specified temporal tolerance of 15
frames from the ground truth end frame. A false alarm is a gesture that either
has been detected within tolerance but incorrectly classified, or its end frame is
more than 15 frames away from the correct end frame of that gesture.

To evaluate our algorithm we have collected video clips of two users gesturing
ten digits 0-9 in sequence. The video clips were captured with a Logitech 3000
Pro camera using an image resolution of 240×320, at a frame rate of 30 Hz. For
each user we collected two types of sequences depending on what the user wore:
three colored glove sequences and three long sleeves sequences; (a total of six
sequences for each user). The model digit exemplars (Fig. 3) were extracted from
the colored glove sequences, and were used for spotting the gestures in the long
video streams. The range of the input sequence lengths is [1149, 1699] frames.
The range of the digit sequence lengths is [31, 90] frames. The range of the (in
between digits) non-gestures sequence lengths is [45, 83] frames.
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For the glove sequences the hand was detected and tracked using the glove
color distribution. For the other sequences the hand was detected and tracked
using color and motion. A hand mask was computed using skin and non-skin
color distributions [15], and was applied to an error residual image obtained by
a block-based optical flow method [16]. For every frame we computed the 2D
hand centroid locations and the angle between two consecutive hand locations.
The feature vectors (Mi and Qj) used to compute the local distance d(i, j) are
the 2D positions only. The classifier used for pruning was combination of two
classifiers: one based on the 2D positions and the other based on the angle
feature. Those classifiers were trained on the model digits in the offline step. To
avoid overpruning we added 20 pixels to the thresholds of all position classifiers
and an angle of 25 degrees to all angle classifiers.

For the end-point detection algorithm we specified the following supergesture
lists that capture the subgesture relationship between digits:

Subgesture Supergestures
“0” {“9”}
“1” {“4”,“7”,“9”}
“4” {“2”,“5”,“6”,“8”,“9”}
“5” {“8”}
“7” {“2”,“3”,“9”}

The experimental results are summarized in Table 1. For the baseline CDP
algorithm we obtained 47 correct detections and 13 false matches. For the pro-
posed CDPP algorithm without subgesture reasoning we obtained 51 correct
detections and 9 false matches, and finally for the proposed CDPP algorithm
with subgesture reasoning we obtained 58 correct detections and 2 false matches.
The two false matches resulted from two examples of the digit 0 that were con-
fused as 6. Compared to CDPP without subgesture reasoning, the proposed
CDPP with subgesture reasoning corrected a single instance of the digit “3”
initially confused as its corresponding subdigit “7”, four instances of the digit
“8” initially confused as its corresponding subdigit “5”, and two instances of the
digit “9” initially confused as its corresponding subdigit “1”.

Table 1. Comparison of gesture spotting accuracy results between the baseline and
the proposed gesture spotting algorithms. The accuracy results are given in terms of
correct detection rates and false matches. The total number of gestures is 60

Method CDP CDPP CDPPS

Detection Rate 78.3% 85.0% 96.7%
False Matches 13 9 2

In our experiments CDPP executed 14 times faster compared to CDP in
terms of CPU time, assuming feature extraction. The overall vision-based recog-
nition system runs comfortably in real-time.
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5 Conclusion and Future Work

This paper presented a novel gesture spotting algorithm. In our experiments,
this novel algorithm is an order of magnitude faster and 18% more accurate
compared to continuous dynamic programming. Our current work explores other
classifiers that can be used for pruning. In order to further improve our system’s
accuracy, we plan to incorporate a module that can make use of the DP alignment
information to verify that the candidate gesture that has been detected and
recognized indeed belongs to the estimated class. This is commonly known as
verification in word spotting for speech [8]. Finally, rather than specifying the
subgesture relationships manually we plan to learn them from training data.
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Abstract. Social interaction plays an important role in our daily lives. It is one 
of the most important indicators of physical or mental diseases of aging pa-
tients. In this paper, we present a Wizard of Oz study on the feasibility of de-
tecting social interaction with sensors in skilled nursing facilities. Our study ex-
plores statistical models that can be constructed to monitor and analyze social 
interactions among aging patients and nurses. We are also interested in identify-
ing sensors that might be most useful in interaction detection; and determining 
how robustly the detection can be performed with noisy sensors. We simulate a 
wide range of plausible sensors using human labeling of audio and visual data. 
Based on these simulated sensors, we build statistical models for both individ-
ual sensors and combinations of multiple sensors using various machine learn-
ing methods. Comparison experiments are conducted to demonstrate the effec-
tiveness and robustness of the sensors and statistical models for detecting 
interactions.  

1   Introduction 

The worldwide population over age 65 is expected to more than double from 357 
million in 1990 to 761 million by 2025 [17]. At present, five percent of Americans 
over age 65 reside in nursing homes, with up to 50 percent of those over the age of 85 
likely being placed in a nursing home at some point in their lives [13]. Among these 
nursing home residents, about 80% of them are believed to suffer from a psychiatric 
disorder, and 90% of patients with Alzheimer’s disease experience behavioral com-
plications leading to increased functional disability, medical morbidity, mortality and 
premature institutionalization [32]. In many nursing homes, physicians might visit 
their patients for only a short period of time once a week. Assessment of a patient’s 
progress is based mainly on reports from staff (nurses and nurse assistants). The re-
ports may be incomplete or even biased, due to schedule shift and the fact that each 
staff person has to take care of many patients. This may result in insufficient observa-
tion for monitoring either progressive change or brief and infrequent occurrences of 
aberrant activity for diagnosing some diseases. For example, dementia is very com-
mon among residents in nursing facilities. One obvious characteristic of dementia is a 
sustained decline in cognitive function and memory [24]. Studies indicate that the 
elderly with dementia may exhibit measurable agitated behaviors that increase confu-
sion, delusion, and other psychiatric disturbances [27][31]. In the early stages of de-
mentia, these agitated behaviors occur occasionally and only last a very short period 
of time and are frequently missed by caregivers. Therefore, a long-term observation 
and care become increasingly important for the elderly with dementia in nursing 
homes [9]. Although no widely accepted measure exists for dementia care environ-
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ments [5], quantitative measures of daily activities of these patients can be very useful 
for dementia assessments.  

In this research, we are interested in automatically extracting information from sen-
sors for geriatric care applications within skilled-care facilities. We would develop a 
system that can automatically extract and classify important antecedents of psychoso-
cial and health outcomes. One such indicator is the frequency, duration and type of 
social interactions of the patients with one another and their caregivers. Interaction 
with others is generally considered a positive and necessary part of our daily life. 
Changes in interaction patterns can reflect mental and physical status of a person. 
Naturally, the level of social interaction of a person depends on a wide range of fac-
tors, such as his/her health condition, his/her personal preference, and aptitude for 
social interaction. More important, most social interactions are observable. This 
makes it possible for detecting them using an automatic system. 

This paper explores the feasibility of building such a sensor-based analyzer to de-
tect social interactions in a nursing home environment. Automatic detection of social 
interaction in a nursing home requires a set of physical and algorithmic sensors. For 
example, we can use an RF (Radio Frequency) sensor to track the location of each 
patient or a speech detector (an algorithm) from audio signals. However, the devel-
opment and deployment of physical and algorithmic sensors are not trivial tasks. Fur-
thermore, attaching physical sensors on bodies of patients is not practical. To this end, 
we employ a Wizard of Oz approach that enables the effectiveness study of various 
combinations of sensors and multiple models from a wide range of plausibly simu-
lated sensors. 

One important goal of this study is to obtain critical knowledge of detecting social 
interactions without physically developing and deploying ineffective or unnecessary 
sensors. This study also aims to find out the intrinsic structure among social interac-
tion events and answer the following questions: how to construct necessary sensors to 
analyze social interactions, and how far from building these sensors we are using 
current technologies. Due to the fact that human beings infer interaction activities 
mainly from audio and visual cues, we are able to simulate potential useful sensors 
using the knowledge of human experts from audio and visual channels. Therefore, 
this study can be performed on the basis of long-term digital audio and video re-
cording of a nursing home environment. We first evaluate the importance of each 
individual sensor and then employ a variety of machine learning techniques to create 
statistical models to identify interactions between people using simulated sensor data.  

2   Related Work 

Social interaction consists of multiple individual human activities among multiple 
people. The work presented in this paper is closely related to location awareness and 
human activity analysis, which have been addressed by many researchers in different 
areas such as multimedia processing, pervasive computing, and computer vision.  

Various wearable sensors have been developed in recent years to address person 
tracking and activity analysis in the ubiquitous computing area. Global Position Sys-
tem [24], active bat location system [15], and PlusOn time modulated ultra wideband 
technology [34] provide location measures from meter to centimeter precision. Some 
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wearable sensors have been applied to health monitoring [23], group interaction ana-
lysis [16], and memory augmentation [29].  

Elderly individuals are usually unwilling to adapt to even tiny changes in environ-
ment, including wearable sensors in their clothes. Some non-contact sensors are con-
sidered to be more practical in our task. Power line network [4] and Ogawa’s monitor-
ing system use switches and motion detectors to track human activities indoors. The 
data provided by switches and motion sensors are reliable and very easy to process. 
However, they cannot provide detailed information. For example, a motion sensor can 
only tell that there is a person in the monitored area but cannot tell the exact location. 

A vision-based system can non-obtrusively provide location information. Many 
computer vision algorithms have been developed for not only recovering 3D locations 
of a person, but also providing detailed appearance information of the person and 
his/her activities. Koile et al [21] at MIT proposed a computer vision system to moni-
tor the indoor location of a person and his/her moving trajectory. The Living Labora-
tory [20] was designed by Kidd, et. al. for monitoring the actions and activities of the 
elderly. Aggarwal, et. al. [1] has reviewed different methods for human motion track-
ing and recognition. Various schemes such as single or multiple camera schemes, and 
2D and 3D approaches, have been broadly discussed in this review.  

A large number of algorithmic sensors have been proposed to detect activities from 
audio and visual signals, including gait recognition [3], hand gesture analysis [11], 
facial expression understanding [10], sitting, standing and walking analysis [23], and 
speech detection [26]. Hudson, et. al examined the feasibility of using sensors and 
statistical models to estimate human interruptibility in an office environment [18]. 
These sensors are still mostly research challenges today, but can be potentially appli-
cable in the future. Combinations of these sensors for analyzing human behaviors 
have been applied in some constrained environment, such as meeting rooms [36] and 
sports fields [19]. 

 
Fig. 1. Examples of interaction patterns in a nursing home 

3   Data Collection and Preprocessing 

Four cameras and four audio collectors were carefully placed in two rooms and a 
hallway of a nursing facility. Recording was performed from 9am to 5pm for 10 days. 
Overall, 320 hours were recorded at the nursing facility. Each video and its corre-
sponding audio channels were digitalized and encoded into an MPEG-2 stream in real 
time and recorded onto hard disks through a PC. The video data was captured and 
finally recorded in 24-bit color with a resolution of 640x480 pixels at 30 frames per 
second. The audio data was recorded at 16-bit 44.1KHz. Figure 1 illustrates some 
examples of interaction patterns from the data. In this paper, only the hallway videos 
are manually ground-truthed and used for analysis. 
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Since we only focus on multi-person activities, we developed a preprocessing algo-
rithm to segment audio/video streams into shots, and classify the shots into three 
classes: non-activity, individual activity, and multi-person activity using audio and 
video event detection techniques.  

3.1   Video Event Detection 

For the video channel, we use a background subtraction algorithm to detect frames 
that contain human activities. To speed up this detection process, only video from one 
camera in the network is used. The background of a frame is obtained by the adaptive 
background method [33]. We employ a threshold to extract pixels that have high dif-
ferences between the current frame and its background. To remove noise, we group 
extracted pixels into regions and only keep those regions that contain more than 15 
pixels. We consider the frame f to contain a visual interaction event Vf=1 if any of the 
following rules is satisfied; otherwise Vf=0:  

1. There are two or more regions in the frame. 
2. There is region that does not touch the bottom the frame, whose width to height 

ratio is more than 0.7.  

We choose these thresholds to detect as many interactions as possible without in-
ducing excess false alarms. The output of the detection is reported every second. For a 
second of NTSC video, we output the percentage of visual cues in its 30 frames as: 
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3.2   Audio Event Detection 

To detect events using an audio stream, we use a very simple power-based method 
similar to the one proposed by Clarkson and Pentland in [6][7]. This method adap-
tively normalizes signal power to zero mean and unity variance using a finite-length 
window; segments where the normalized power exceeds some threshold are desig-
nated “events.” [6] and [7] describe an ambulatory system which could be exposed to 
arbitrary acoustic environments; adaptive normalization allows such a system to com-
pensate for unusually loud or quiet environments and still detect events reliably. Our 
task differs from that system in that we have a stationary system where changes in 
power level really do indicate events and not just changes of venue. As such, instead 
of adaptive normalization, we use global normalization. That is, a single mean and 
variance is calculated for each two-hour recording and the globally-normalized power 
is threshold to detect events af.  

In this implementation, we extracted 16-bit mono audio from the audio-video 
stream, and used analysis windows 200ms in length with a 50% overlap. This window 
length results in a frame rate of 10 frames per second, which is more than adequate to 
detect events using the power-based approach. After signal power is calculated and 
normalized, it is passed through a simple 3-frame averaging filter for smoothing. We 
then apply the power threshold; any segment which exceeds the threshold is desig-
nated an event. We also stipulate a minimum event time of 1 second in order to filter 
out isolated auditory transients. The confidence of audio event per second is defined 
as: 
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3.3   Fusing Video and Audio Event Detection 

Video and audio streams are synchronized and segmented into one-second non-
overlapping patches. The final event detection of each patch combines the video event 
confidence and audio event confidence linearly: 

avd CCC )1( αα −+=  
We consider a one-second patch to contain an interaction if its confidence Cd is higher 
than 0.5. 

To evaluate the preprocessing algorithm, we labeled 10 hours of video/audio data. 
Using only video detection, we extract 33.3% of the entire video as candidate interac-
tion shots, which is listed in Table 1. In order to not miss any interactions, we only 
filter out the one-second-long video segments with zero confidence. 

Table 1. Results of event detection from 
video 

 Total Event 
Time  

Event Time as % 
of Total Signal 

No activity 13711 38.1% 
Individual 6700 18.6% 
Multi-person 15589 33.3%  

Table 2. Results of event detection from 
audio 

Threshold Total Event 
Time 

Event Time as % 
of Total Signal 

1.1 6705 18.6% 
1.6 5582 15.5% 
2.1 4327 12.0%  

Using only audio detection with varying thresholds, we obtain the results listed in 
Table 2. The table shows the total event time and percentage of data in the recordings 
using three thresholds.  

Table 3. Preprocessing results based on the ground-truth 

 Recall Precision Process speed 
Video 98% 13% real time 
Audio 71% 28% 10% real time 
Multimodal 92% 21%  

By fusing the audio (threshold 1.6) and video results, we extracted total 9435 sec-
onds from the entire 10 hours data. In this way, 85 our of 91 interactions in the ground 
truth are covered by the candidate shots, which obtain reasonable recall and precision 
in terms of event time as listed in Table 3. The audio has a lower recall due to the 
presence of silent interactions such as walking assistance of a wheelchair-bound pa-
tient. The audio precision is actually higher in general than is reported here. The hall-
way environment is a poor representative of audio precision, as many events that are 
audible in the hallway are off-camera and not in the ground-truth labels; thus audio 
event detection generates many false alarms. Even so, our results show that by fusing 
audio and video results, we can achieve more than 90% recall and 20% precision. We 
project even better precision when we test our fused system over the entire set of the 
data. The multi-person activity shots are then manually labeled using events selected 
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by a group of doctors. Our study focuses on detecting interactions in multi-person 
activities, since social interaction is mutual or reciprocal action that involves only two 
people.  

4   Sensor Simulation 

A sensor is usually defined as a device that receives a signal or stimulus and responds 
to it in a distinctive manner. As we mentioned in the introduction, we consider both 
physical and algorithmic sensors in this study. For example, in order to investigate the 
temporal referencing probability of detecting an interaction, we consider “temporal 
interaction reference” as an algorithmic sensor, which is a detection result of another 
1-second interval related to the current interval. On the other hand, to reduce number 
of candidate sensors, we omit some sensors that are impossible to implement from 
current technologies, such as speech recognition and facial expression understanding. 
There are some compromises between the technology capability and the medical 
request. We keep some sensors, for instance “hand trembling”, which are very impor-
tant for human experts but are questionable for real implementation. In detail, we 
select 21 events from the Pittsburgh Agitation Scale, which are listed in Table 4 and 
their occurrences in temporal neighborhoods as simulated sensors: 

Table 4. Sensors defined on events and temporal neighborhood 

Approaching Leaving - 5s 
Standing Hand trembling - 4s 
Talking Pushing a wheelchair - 3s 
Shaking hands Passing - 2s 
Hand touch body slowly Sitting - 1s 
Hand touch body normally Walking   0s 
Hand touch the body quickly Hand in hand + 1s 
Hugging Kiss + 2s 
Face turning Kick + 3s 
Walking (moving) together Sitting down + 4s 
Temporal interaction reference 

× 

+ 5s 

= Sensors 
 

We label each shot second by second. The range of the temporal neighborhood is 
chosen from 5 seconds ahead to 5 seconds behind the current one. Overall we ob-
tained 230 (21×11-1) simulated sensors, including 21 events times and 11 temporal 
neighbors, except the “temporal interaction reference (T-reference)” in the current 
interval, which is not considered as a sensor. All the sensors are labeled as binary 
events since there is no ambivalent in human experts’ judgments during the labeling. 
We can see that one-second recording content may contain more than one direct or 
derived event detected by the simulated sensors.  

To know which sensors would be most useful, we first analyze the effectiveness of 
individual sensors in detecting social interactions. The first measure that we use to 
study individual sensors is information gain [30]. Information gain indicates the po-
tential power of each sensor in predicting an interaction. The details of how this tech-
nique works will not be covered in this paper. Table 5 lists top 28 sensors selected by 
information gain with respect to a correct prediction of a social interaction. 
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Table 5. Top 28 sensors selected by information gain technique 

1 T-reference-1 8 Walking 0 15 Talking-2 22 Approaching+1 
2 T-reference+1 9 T-reference-5 16 Walking+2 23 Walk together 0 
3 T-reference-2 10 T-reference+4 17 Talking-3 24 Walking+3 
4 T-reference+2 11 Walking+1 18 Talking+2 25 Talking-5  
5 T-reference-3 12 Walking-1 19 Approaching 0 26 Approaching-1 
6 T-reference+3 13 T-reference+5 20 Walking-2 27 Talking+3 
7 T-reference-4 14 Talking+1 21 Talking-4 28 Leaving 0 

The table shows that the T-reference of an interaction has obvious temporal consis-
tency. Most interactions take longer than one second, and this consistency information 
is so important that it occupies the top 7 ranks with respect to the information gain 
scores. 

Besides the temporal consistency, it also shows that the sensors of walking and 
talking are very important cues associated with an individual person; and relative 
location, such as approaching, leaving, walking together, and hand gesture are impor-
tant between two persons. These sensors are important even in our daily experience. 
However, some sensors, such as “hand normal” and “pushing”, which are also obvi-
ous evidence of an interaction, have very low ranks in information gain. They are 
either co-occurrences with some high rank sensors or omitted by the information gain 
technique due to their small number of examples. 

Information gain takes an empirical risk to rank the sensors, which can be biased 
when training samples are redundant in some interaction patterns. For example, a long 
sequence of standing conversation will lead to higher ranks for talking and standing 
than that of a short sequence. It tends to omit the sensors with small numbers of ex-
amples in the training set, even though these sensors are very powerful in predicting 
social interactions. To avoid this kind of bias, we also analyze the power of each sen-
sor using a structural risk based support vector machine (SVM) method [2]. This 
method trains an SVM using a subset of the training set from all sensors, and then 
eliminates sensors with low weight in representing the decision hyper-plane. Because 
the decision hyper-plane is trained to maximize the margin between the closest posi-
tive support vectors and negative support vectors, repeated patterns in the training set 
don’t affect the result. Therefore, it is robust to the training set which contains a bi-
ased number of training examples for different sensors. 

Table 6 lists the top 28 sensors selected by the SVM method. These 28 sensors 
cover most events in our total 21 events. Only “sitting” and “passing” are not in-
cluded. This selection is more reasonable since the high rank sensors, such as “walk-
together”, “hand touch body normally”, “talking”, and “pushing”, are obvious evi-
dence of an interaction. The sensors with the top 2 ranks are still “T-reference” in the 
closest neighborhoods. This indicates that the 1-second interval is small and precise 
enough for analyzing social interactions in a nursing home environment. In compari-
son with the information gain results, the sensor “talking” is a common important 
sensor selected by both methods. The “walking” sensor is replaced by “walk together” 
and “pushing”. They all overlap the sensor “walking”, but provide more specific in-
formation. Hand related sensors are also ranked higher, which indicates that social 
interaction may benefit from developing better hand analysis sensors. 
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Table 6. Top 28 sensors selected by SVM 

1 T-reference+1 8 Pushing+4 15 Pushing-3 22 Face turning 0 
2 T-reference-1 9 Hand in hand 0 16 Walking+2 23 Walk together 0 
3 Walk together 0 10 Kick 0 17 Face turning+1 24 Shaking hand+5 
4 Hand normal 0 11 Hand slow 0 18 Approaching 0 25 Pushing+3  
5 Talking 0 12 Hand-trem 0 19 Pushing-4 26 Hug+2 
6 Pushing 0 13 T-reference-2 20 Hand normal+3 27 Standing+2 
7 Talking+1 14 Leaving 0 21 Walk together+4 28 T-reference+2 

Temporal information is included in our simulated sensors. We evaluated the effec-
tiveness of temporal orders by averaging the two selection results together and com-
puting the histogram of the temporal orders. Figure 2 illustrates the effectiveness of 
temporal order in detecting social interactions. 

 

Fig. 2. Effectiveness of temporal order 

The effectiveness of the temporal order drops quickly as the time span from the 
current time increases from zero. The effect of events more than 3 seconds away from 
the current one is very limited and can provide little useful information for analyzing 
social interactions. Sensor selection only analyzes the effectiveness of individual 
sensors; in the next section we will investigate the power of combinations of sensors 
using statistical models. 

5   Detection Models 
It should be noted that there are some overlaps among simulated sensors, e.g., “walk-
ing together” implies “walking”. The first goal of this section is to explore proper 
statistical models to detect social interactions. We consider that the detection of a 
social interaction is a binary classification problem: interaction and non-interaction. 
The other goal of this section is to further investigate the associations between differ-
ent sensors. This will enable us to replace some impracticable sensors with combina-
tions of sensors that can be more easily developed. Since we have considered includ-
ing temporal information in the simulated sensors, the interaction detection problem 
can be simplified as a problem to classify the sensor outputs of each 1-second interval 
into two classes, indicating interaction and non-interaction respectively.  

To find a proper model for classifying interactions, we evaluated various machine 
learning algorithms: decision tree [28], naive Bayesian [22], Bayes network [17], 
logistic regression [14], support vector machine [35], adaboost [25], and logitboost 
[12]. We will not describe details of these algorithms in this paper; interested readers 
can find these details in the references. 
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The evaluations are shown in Table 7. We use equal size training and testing data. 
Standard 5-fold cross-validation is performed to find optimal parameters for each 
model. We then perform the resulted optimal models on the testing set to report the 
numbers in Table 7. 

Table 7. Performance of interaction detection using different models 

 With T-reference Without T-reference 
Model Prec. Recall F-measure Prec. Recall F-measure 
Decision tree 99.5% 99.2% 99.3% 97.1% 96.4% 96.8% 
Naive Bayesian 98.4% 92.9% 95.6% 96.3% 90.1% 93.1% 
Bayes network 98.4% 93.0% 95.6% 96.3% 90.4% 93.3% 
Logistic reg. 99.6% 98.7% 99.2% 96.5% 94.5% 95.5% 
SVM 99.5% 99.5% 99.5% 98.0% 95.1% 96.5 
adaboost 99.7% 99.1% 99.4% 95.4% 93.9% 94.6% 
logitboost 99.7% 99.1% 99.4% 96.0% 95.6% 95.8% 

We can see that under the ideal conditions (all sensors output correct result without 
any ambiguity), all these models obtain good detection results. To our surprise, the 
simplest method, decision tree, employs only four kinds of sensors: “T-reference”, 
“talking”, “walking”, and “leaving”, but achieves very good performance. None of 
these sensors except “T-reference” requires complex visual and audio analysis in 
comparison to sensors such as “face turning” and “hand in hand”. It seems possible 
that social interaction can be detected by just developing good “talking”, “walking”, 
and “leaving” sensors. It is true if the “T-reference” sensor can be successfully de-
rived from these three kinds of sensors. 

To remove the effect of the temporal information of the derived sensor “T-
reference”, we assume that the “T-reference” sensor is not available to its neighbors. 
We remove all “T-reference” sensor outputs from feature vectors and evaluate the 
above methods. The results are also listed in Table 7. After removing the “T-
reference” sensor, the performance drops about 3-5%, which indicates that we can 
achieve around 90% accuracy in detecting current interaction with the temporal in-
formation of interaction decisions in neighborhoods. As we assume outputs of other 
sensors are under ideal conditions, the real accuracy of the current “T-reference” 
sensor output is expected to be about 90% of the average accuracy of all the other 
sensors’ outputs. The decision tree still achieved the best performance even without 
the “T-reference” sensors. However, the resulting decision tree includes all kinds of 
sensors. The top 10 sensors are:  

Rank Sensor Rank Sensor 
1 Talking 6 Hand in hand 
2 Walk together 7 Standing 
3 Walking 8 Leaving 
4 Pushing 9 Approaching 
5 Hand normal 10 Passing 

A drawback of the decision tree is that it is sensitive to the noise in sensor outputs. 
In practice, outputs of sensors might be ambiguous or even incorrect. Some of the 
sensor outputs have to be represented by probabilities, e.g., 60% “talking” or 30% 
“hand in hand”. The uncertainties of sensor outputs can only be determined from real 
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data of experiments. What we can do in a simulation is to add some noise into outputs 
of sensors. Table 8 lists results of adding 20% noise (20% sensors have wrong out-
puts) into the data without “T-reference” sensors.  

Table 8. Performances of interaction detection using different models with 20% noise 

Model Prec. Recall F-measure 
Decision tree 90.0% 90.4% 90.2% 
Naive Bayesian 88.6% 75.3% 81.4% 
Bayes network 88.1% 77.6% 82.5% 
Logistic regression 90.1% 93.5% 91.8% 
SVM 91.4% 95.3% 93.3% 
adaboost 89.6% 93.8% 91.6% 
logitboost 90.1% 95.6% 92.8% 

The performance of the decision tree decreases from 96.8% (F-measure) to 90.2%, 
or loses 6.6% accuracy. At the same time, the performance of the SVM model de-
creases from 96.5% to 93.3%, or only loses 3.2% accuracy. Notably, the recall of the 
SVM only decreases 0.5% with 20% noise. The logitboost model also proved to be 
robust against noise; the recall remains the same after adding noise. The F-measure 
loses only 3% accuracy. This indicates that the SVM model is potentially more robust 
than the decision tree model in real applications. 

It should be noted that the noise level of 20% is an empirical assumption. Real sen-
sors will have different accuracies. According to our preliminary implementations of 
some real sensors, walking related sensors introduce around 15% noise on average, 
the “standing” sensor only has 6% noise, the “talking” sensor produces about 30% 
noise, and face and hand related sensors are still under development. If the noise 
range of face and hand related sensors are 40%-60%, 20% noise on average for all 
sensors is reasonable.  

6   Conclusions 

This paper presents a study of feasibility of sensor-based analysis of social interaction 
patterns in a skilled nursing facility. We have analyzed the capabilities of various 
individual sensors for detecting social interactions. The relative location related sen-
sors, hand related sensors, talking sensors, and temporal consistency information are 
ranked high priorities in the task of detecting interactions.  

We have also compared various statistical models to explore overlapped spaces of 
multiple sensors. The experimental results have indicated that the decision tree model 
could achieve more than 99% accuracy with only three kinds of sensors: “talking”, 
“walking”, and “leaving”, plus temporal information under noise free conditions. This 
indicates the possibility of achieving good interaction detection performance by de-
veloping perfect “talking”, “walking”, and “leaving” sensors, instead of developing 
complex ones, such as face and hand gesture sensors. We also demonstrated the ro-
bustness of various models when noisy sensors are considered. The SVM model and 
the logitboost model have been proven to be more robust against noise than other 
models. Based on the promising results from this study, we will develop working 
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systems with real sensors. We will further classify social interaction patterns and 
evaluate those systems and algorithms. 

Reference 
1. Aggarwal, J. K., Cai, Q. Human Motion Analysis: A Review. Computer Vision and Image 

Understanding, Vol. 73, pp. 428-440, 1999. 
2. Brank, J., Grobelnik, M., Milic-Frayling, N. and Mladenic, D. Feature selection using lin-

ear support vector machines. MSR-TR-2002-63, Microsoft research 2002. 
3. Bregler, C. Learning and Recognizing Human Dynamics in Video Sequences. In CVPR, 

pages 568-574, 1997. 
4. Brumitt, B., Krumm, J., Meyers, B. and Shafer, S. Ubiquitous computing and the role of 

geometry. In Special Issue on Smart Spaces and Environments, volume 7-5, pages 41-43. 
IEEE Personal Communications, October 2000. 

5. Carp, F. Assessing the environment. Annul review of gerontology and geriatrics, 14, pages: 
302-314, 1994. 

6. Clarkson, B. and Pentland, A. Framing Through Peripheral Perception. Proc. of ICIP, Van-
couver, September 2000. 

7. Clarkson, B. and Pentland, A. Unsupervised Clustering of Ambulatory Audio and Video. 
Proc. of the ICASSP, Phoenix, 1998. 

8. Emler N., Gossip, reputation, and social adaptation. In R.F.Goodman and A. Ben-Ze'ev 
(Eds.) Good Gossip, pages.117-138. Wichita, Kansas, USA: University Press of Kansas 
1994 

9. Eppig, F. J. and Poisal, J. A. Mental health of medicare beneficiaries: 1995. Health Care 
Financing Review, 15, pages: 207-210, 1995. 

10. Essa, I. and Pentland, A. Facial expression recognition using a dynamic model and motion 
energy. In Proc. 5th Intl. Conf. on Computer Vision, pages 360--367, 1995. 

11. Freeman, W. T. and Roth, M. Orientation histograms for hand gesture recognition. In Inter-
national Workshop on Automatic Face and Gesture Recognition, pages 296-301, June 
1995. 

12. Friedman, J., Hastie, T. and Tibshirani, R. Additive logistic regression: a statistical view of 
boosting. Annals of Statistics, 28:307--337, 2000. 

13. German, P.S., Rovner, B.W., Burton, L.C., Brant, L.J. and Clark, R. The role of mental 
morbidity in the nursing home experience. Gerontologist, 32(2): 152-158, 1992.  

14. Hastie, T. and Tibshirani, R. Nonpararmetric logistic and proportional odds regression. Ap-
plied statistics 36:260-276, 1987. 

15. Harter, A., Hopper, A., Steggles, P., Ward, A. and Webster, P. The anatomy of a context-
aware application. In Proceedings of the 5th Annual ACM/IEEE International Conference 
on Mobile Computing and Networking, pages 59-68, Seattle, WA, August 1999. 

16. Holmquist, L., Falk, J. and Wigstrm, J. Supporting group collaboration with interpersonal 
awareness devices. Personal Technologies, 3:13–21, 1999. 

17. Hooyman, N.R. and Kiyak, H.A. Social Gerontology: A Multidisciplinary Perspective. 6th 
ed., Allyn and Bacon 2002. 

18. Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J. and 
Yang, J. Predicting Human Interruptibility with Sensors: A Wizard of Oz Feasibility Study. 
In Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pages 257-
264 2003. 

19. Jug, M., Pers, J., Dezman, B. and Kovacic, S. Trajectory based assessment of coordinated 
human activity. In ICVS 2003, pages 534–543, 2003. 

20. Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C. G., Essa, I. A., Macintyre, B., Mynatt, E. 
and Starner, T. E. and Newstetter, W. The Aware Home: A Living Laboratory for Ubiqui-
tous Computing Research. Proc. of CoBuild '99, pp.191-198, 1999. 



210      Datong Chen, Jie Yang, and Howard Wactlar 

21. Koile, K., Tollmar, K., Demirdjian, D., Shrobe, H. E., Darrell, T. Activity Zones for Con-
text-Aware Computing. Ubicomp 2003, pp. 90-106, 2003. 

22. Kononenko I., Semi-naive bayesian classifier. In Proceedings of sixth European Working 
Session on Learning, pages 206-219. Springer-Verlag, 1991. 

23. Lee, S. and Mase, K. Activity and location recognition using wearable sensors. In 1st IEEE 
International Conference on Pervasive Computing and Communications, pages 24–32, 
2002. 

24. Lubinski, R. Dementia and communication. Philadelphia: B. C. Decker, 1991. 
25. Margineantu, D. D. and Dietterich, T. G. Pruning adaptive boosting. In 14th Int. Conf. on 

Machine Learning, pages 211-218. Morgan Kaufmann, 1997. 
26. Martin, A., Karrray, L. and Gilloire, A. High Order Statistics for Robust Speech/Non-

Speech Detection. In Eusipco, Tampere, Finland, Sept. 2000, pp. 469--472. 
27. Nelson, J. The influence of environmental factors in incidents of disruptive behavior. Jour-

nal of Gerontological Nursing 21(5):19-24, 1995. 
28. Quinlan, J. R. C4.5: programs for machine learning. Morgan Kaufmann 1993. 
29. Rhodes, B. The wearable remembrance agent: A system for augmented memory. In Pro-

ceedings of the 1st International Symposium on Wearable Computers, pp: 123–128, 1997. 
30. Schraudolph, N. and Sejnowski, T. J. Unsupervised discrimination of clustered data via op-

timization of binary information gain. In Stephen Jose Hanson, Jack D. Cowan, and C. Lee 
Giles, editors, Advances in Neural Information Processing Systems, volume 5, pages 499-
506. Morgan Kaufmann, San Mateo, 1993. 

31. Sloane, P. D., Mitchell, C. M., Long, K. and Lynn, M. TESS 2+ Instrument B: Unit obser-
vation checklist – physical environment: A report on the psychometric properties of indi-
vidual items, and initial recommendations on scaling. University of North Carolina 1995. 

32. Steele, C., Rovner, B. W., Chase, G. A. and Folstein, M. Psychiatric symptoms and nursing 
home placement in Alzheimer's disease. American Journal of Psychiatry, 147(8): pp.1049-
1051, 1990.  

33. Stauffer, C. and Grimson, W. E. L. Adaptive background mixture models for real-time 
tracking. Proc. of CVPR 1999. 

34. Time Domain Corporation, 7057 Old Madison Pike, Huntsville, AL 35806. PulsON Tech-
nology: Time Modulated Ultra Wideband Overview, 2001. 

35. Vapnik, V.N. The nature of statistical learning theory. Springer Verlag, New York, 1995. 
36. Zhang, D., Li, S. Z., Gatica-Perez, D. Real-Time Face Detection Using Boosting Learning 

in Hierarchical Feature Spaces. 17th International Conference on Pattern Recognition 2004. 



N. Sebe, M.S. Lew, and T.S. Huang (Eds.): HCI/ICCV 2005, LNCS 3766, pp. 211–220, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

HMM Based Falling Person Detection 
Using Both Audio and Video* 

B. U ur Töreyin1, Yi ithan Dedeo lu2, and A. Enis Çetin1 

1 Department of Electrical and Electronics Engineering, 
Bilkent University 06800 Bilkent, Ankara, Turkey 

{bugur,cetin}@bilkent.edu.tr 
2 Department of Computer Engineering, 

Bilkent University 06800 Bilkent, Ankara, Turkey 
yigithan@bilkent.edu.tr 

Abstract. Automatic detection of a falling person in video is an important prob-
lem with applications in security and safety areas including supportive home 
environments and CCTV surveillance systems. Human motion in video is mod-
eled using Hidden Markov Models (HMM) in this paper. In addition, the audio 
track of the video is also used to distinguish a person simply sitting on a floor 
from a person stumbling and falling. Most video recording systems have the ca-
pability of recording audio as well and the impact sound of a falling person is 
also available as an additional clue. Audio channel data based decision is also 
reached using HMMs and fused with results of HMMs modeling the video data 
to reach a final decision. 

1   Introduction 

Detection of a falling person in an unsupervised area is a practical problem with ap-
plications in safety and security areas including supportive home environments and 
CCTV surveillance systems. Intelligent homes will have the capability of monitoring 
activities of their occupants and automatically provide assistance to elderly people 
and young children using a multitude of sensors including surveillance cameras in the 
near future [1, 2, 3]. Currently used worn sensors include passive infrared sensors, 
accelerometers and pressure pads. However, they may produce false alarms and eld-
erly people simply forget wearing them very often. Computer vision based systems 
propose non-invasive alternatives for fall detection. In this paper, a video based fal-
ling person detection method is described. Both audio and video tracks of the video 
are used to reach a decision.  

Video analysis algorithm starts with moving region detection in the current image. 
Bounding box of the moving region is determined and parameters describing the 
bounding box are estimated. In this way, a time-series signal describing the motion of 
a person in video is extracted. The wavelet transform of this signal is computed and 
used in Hidden Markov Models (HMMs) which were trained according to possible 
human being motions. It is observed that the wavelet transform domain signal pro-
vides better results than the time-domain signal because wavelets capture sudden 
changes in the signal and ignore stationary parts of the signal. 
                                                           
*  This work is supported in part by European Commission 6th Framework Program with grant 

number FP6-507752 (MUSCLE Network of Excellence Project) 
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Audio analysis algorithm also uses the wavelet domain data. HMMs describing the 
regular motion of a person and a falling person were used to reach a decision and 
fused with results of HMMs modeling the video data to reach a final decision. 

In [4] motion trajectories extracted from an omnidirectional video are used to de-
termine falling persons. When a low cost standard camera is used instead of an omni-
directional camera it is hard to estimate moving object trajectories in a room. Our fall 
detection method can be also used together with [4] to achieve a very robust system, 
if an omnidirectional camera is available. Another trajectory based human activity 
detection work is presented in [5]. Neither [4] nor [5] used audio information to un-
derstand video events. 

In Section 2, the video analysis algorithm is described and in Section 3, the audio 
analysis algorithm is presented. In Section 4, experimental results are presented. 

2   Analysis of Video Track Data 
Our video analysis consists of three steps: i) moving region detection in video, ii) 
calculation of wavelet coefficients of a parameter related with the aspect ratio of the 
bounding box of the moving region, and iii) HMM based classification using the 
wavelet domain data. Each step of our video analysis algorithm is explained in detail 
next. 

i) Moving region detection: The camera monitoring the room is assumed to be sta-
tionary. Moving pixels and regions in the video are determined by using a background 
estimation method developed in [6]. In this method, a background image Bn+1 at time 
instant n+1 is recursively estimated from the image frame In and the background 
image Bn of the video as follows: 

 
(1) 

where In(k, l) represents a pixel in the nth video frame In, and a is a parameter between 
0 and 1. Moving pixels are determined by subtracting the current image from the 
background image and adaptive thresholding (cf. Fig. 1a). For each pixel an adaptive 
threshold is estimated recursively in [6]. Pixels exceeding thresholds form moving 
regions and they are determined by connected component analysis. 

We do not need very accurate boundaries of moving regions. Hence the above 
computationally efficient algorithm is sufficient for our purpose of estimating the 
aspect ratios of moving regions in video. Other methods including the ones described 
in [7] and [8] can also be used for moving pixel estimation but they are computation-
ally more expensive than [6]. 

ii) Feature extraction from moving regions and the wavelet transform: After a 
post-processing stage comprising of connecting the pixels, moving regions are encap-
sulated with their minimum bounding rectangles (cf. Fig.1b). Next, the aspect ratio, ρ, 
for each moving object is calculated. The aspect ratio of the ith moving object is de-
fined as: 

 
(2) 
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where Hi(n) and Wi(n) are the height and the width of the minimum bounding box of 
the ith object at image frame n, respectively, We then calculate the corresponding 
wavelet coefficients for ρ. Wavelet coefficients, wi’s, are obtained by high-pass filter-
ing followed by decimation as shown in Fig. 2. 

 
 (a) (b) 

Fig. 1. (a) Moving pixels, and (b) their minimum bounding boxes are determined 

 

Fig. 2. Wavelet coefficients, wi corresponding to aspect ratio ρi are evaluated with an integer 
arithmetic high-pass filter (HPF) corresponding to Lagrange wavelets [9] followed by decima-
tion 

The wavelet transform of the one-dimensional aspect ratio signal is used as a fea-
ture signal in HMM based classification in this paper. It is experimentally observed 
that the aspect ratio based feature signal exhibits different behaviour for the cases of 
walking and falling persons. A quasi-periodic behaviour is obviously apparent for a 
walking person in both ρ(n) and its corresponding wavelet signal as shown in Fig. 3. 
On the other hand, the periodic behaviour abruptly ends and ρ(n) decays to zero for a 
falling person or a person sitting down. This decrease and the later stationary charac-
teristic for fall is also apparent in the corresponding subband signal (cf. Fig. 4). 

Using wavelet coefficients, w, instead of aspect ratios, ρ, to characterize moving 
regions has two major advantages. The primary advantage is that, wavelet signals can 
easily reveal the aperiodic characteristic which is intrinsic in the falling case. After 
the fall, the aspect ratio does not change or changes slowly. Since, wavelet signals are 
high-pass filtered signals, slow variations in the original signal lead to zero-mean 
wavelet signals. Hence it is easier to set thresholds in the wavelet domain which are 
robust to variations of posture sizes and aspect ratios for different people. This consti-
tutes the second major advantage. We set two threshols, T1 and T2 for defining 
Markov states in the wavelet domain as shown in Fig. 3. The lower threshold T1 basi-
cally determines the wavelet signal being close to zero. After the fall, ideally the 
wavelet signal should be zero but due to noise and slow movements of the fallen per-
son the wavelet coefficients wiggle around zero. The use of wavelet domain informa-
tion also makes the method robust to variations in object sizes. This is achieved by the 
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use of the second threshold T2 to detect high amplitude variations in the wavelet sig-
nal, which correspond to edges or high-frequency changes in the original signal. 
When the wavelet coefficients exceed the higher threshold T2 in a frequent manner 
this means that the object is changing its shape or exhibiting periodic behaviour due 
to walking or running. 

iii) HMM based classification: Two three-state Markov models are used to classify 
the motion of a person in this paper. Non-negative thresholds T1 < T2 introduced in 
wavelet domain, define the three states of the Hidden Markov Models for walking and 
falling, as shown in Fig. 5a and b, respectively. 

 

Fig. 3. Quasi-periodic behaviour in ρ vs. time (top), and the corresponding wavelet coefficients 
w vs. time for a walking person (sampling period is half of the original rate in the wavelet plot). 
Thresholds T1 and T2 introduced in the wavelet domain are robust to variations in posture sizes 
and aspect ratios of different people 

 

Fig. 4. Aspect ratio ρ vs. time (top), and the corresponding wavelet coefficients w vs. time for a 
falling person (sampling period is half of the original rate in the wavelet plot) 

At time n, if |wi(n)| < T1, the state is in S1; if T1 < |wi(n)| < T2, the state is S2; else 
if |wi(n)| > T2, the state S3 is attained. During the training phase of the HMMs transi-
tion probabilities auv and buv, u,v = 1, 2, 3, for walking and falling models are esti-
mated off-line, from a set of training videos. In our experiments, 20 consecutive im-
age frames are used for training HMMs. 

T2

T1 
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 (a) (b) 

Fig. 5. Three state Markov models for (a) walking, and (b) falling 

For the walking person, since the motion is quasi-periodic, we expect similar tran-
sition probabilities between the states. Therefore the values of a’s are close to each 
other. However, when the person falls down, the wavelet signal starts to take values 
around zero. Hence we expect a higher probability value for b00 than any other b value 
in the falling model, which corresponds to higher probability of being in S1. The state 
S2 provides hysteresis and it prevents sudden transitions from S1 to S3 or vice versa.  

During the recognition phase the state history of length 20 image frames are de-
termined for the moving object detected in the viewing range of the camera. This state 
sequence is fed to the walking and falling models. The model yielding higher prob-
ability is determined as the result of the analysis for video track data. However, this is 
not enough to reach a final decision of a fall. Similar w vs. time characteristics are 
observed for both falling and ordinary sitting down cases. A person may simply sit 
down and stay stationary for a while. To differentiate between the two cases, we in-
corporate the analysis of the audio track data to the decision process. 

3   Analysis of Audio Track Data 

In this paper, audio signals are used to discriminate between falling and sitting down 
cases. A typical stumble and fall produces high amplitude sounds as shown in Fig. 6a, 
whereas the ordinary actions of bending or sitting down has no distinguishable sound 
from the background (cf. Fig. 6b). The wavelet coefficients of a fall sound are also 
different from bending or sitting down as shown in Fig. 7. Similar to the motivation in 
the analysis of video track data for using wavelet coefficients, we base our audio 
analysis on wavelet domain signals. Our previous experience in speech recognition 
indicates that wavelet domain feature extraction produces more robust results than 
Fourier domain feature extraction [10]. Our audio analysis algorithm also consists of 
three steps: i) computation of the wavelet signal, ii) feature extraction of the wavelet 
signal, and iii) HMM based classification using wavelet domain features. 

i) Wavelet signal: We use the same high-pass filter followed by a decimation block 
shown in Fig. 2, to obtain a wavelet signal corresponding to the audio signal accom-
panying the video track data. The wavelet signals corresponding to the audio track 
data in Fig. 6a and b, are shown in Fig. 7a and b, respectively. 
ii) Analysis of wavelet signals: The wavelet signals corresponding to audio track 
data are further analyzed to extract features in fixed length short-time windows. We 
take 500-sample-windows in our implementation. Our sampling frequency is 44.1 
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KHz. We determine the variance, σi
2, and the number of zero crossings, Zi, in each 

window i.  

 
 (a) (b) 

Fig. 6. Audio signals corresponding to (a) a fall, which takes place at around sample number 
1.8x105, and (b) talking (0 - 4.8x105), bending (4.8x105 – 5.8x105), talking (5.8x105 – 8.9x105), 
walking (8.9x105 – 10.1x105), bending (10.1x105 - 11x105), and talking (11x105 - 12 x105) 
cases. The sound signals are sampled with 44,100 Hz 

  
 (a) (b) 

Fig. 7. The wavelet signals corresponding to the audio signals in (a) falling (0.9 x105), and (b) 
talking (0 – 2.4x105), bending (2.4x105 – 2.9x105), talking (2.9x105 – 4.5x105), walking 
(4.5x105 – 5x105), bending (5x105 – 5.5x105), and talking (5.5x105 - 6 x105) 

We observe that, walking is a quasi-periodic sound in terms of σi
2 and Zi. How-

ever, when a person stumbles and falls, Zi decreases whereas σi
2 increases. So we 

define a feature parameter κ in each window as follows: 

 
(3) 

where the index i indicates the window number. The parameter κ takes non-negative 
values. 

Talking has a varying σi
2-Zi characteristic depending on the utterance. When vow-

els are uttered, σi
2 increases while Zi decreases, which results in larger κ values com-

pared to consonant utterances. Variation of κ values versus sample numbers for dif-
ferent cases, are shown in Fig. 8. 
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 (a) (b) (c) 

Fig. 8. The ratio of variance over number of zero crossings, κ, variations for (a) falling (180), 
(b) walking, and (c) talking (0 – 480), bending (480 – 590), talking (590 – 900), walking (900 – 
1000), bending (1000 – 1100), and talking (1100 - 1200). Note that, κ values for (b) the walking 
case, are an order of magnitude less than (a) falling and (c) talking cases. Thresholds T1’ < T2’, 
are defined in κ domain 

iii) HMM based classification: In this case, three three-state Markov models are 
used to classify the walking, talking and falling sounds. The non-negative thresholds 
T1’ < T2’ introduced in κ domain, define three states of the Hidden Markov Models 
for walking, talking and falling, as shown in Fig. 9a, b, and c, respectively. 

 
 (a) (b) (c) 

Fig. 9. Three-state Markov models for (a) walking, (b) talking, and (c) falling sound classifica-
tion 

For the ith window of the wavelet signal, if |κi| < T1’, state S1; if T1’ < |κi| < T2’, 
state S2; else if |κi| > T2’, state S3 is attained. During the training phase, transition 
probabilities, auv, buv, and cuv, u,v = 1, 2, 3, for walking, talking, and falling models, 
respectively, are estimated off-line. These probabilities are estimated from 20 con-
secutive κ values corresponding to 20 consecutive 500-sample-long wavelet windows 
for training HMMs. 

During the classification phase a state history signal consisting of 20 κ values are 
estimated from the sound track of the video. This state sequence is fed to the walking, 
talking, and falling models in running windows. The model yielding highest probabil-
ity is determined as the result of the analysis for audio track data. We then combine 
this result with the result of the video track analysis step using the logical “and” op-
eration. Therefore, a “falling person detected” alarm is issued only when both video 
and audio track data yield the highest probability in their “fall” models. 
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4   Experimental Results 
The proposed algorithm works in real-time on an AMD AthlonXP 2000+ 1.66GHz 
processor. As described above HMMs are trained from falling, walking, and walking 
and talking video clips. A total of 64 video clips having 15,823 image frames are 
used. In all of the clips, only one moving object exists in the scene. Contents of the 
test video clips are summarized in Table 1. 

Table 1. Video content distribution in the test set 

Video Content Include Audio No. of Clips 
Walking + Talking Yes 16 

Sitting down + Talking Yes 5 
Sitting down Yes 4 

Walking + Falling Yes 25 
Walking + Falling No 14 

As can be seen from Table 1, 14 of the clips having falls do not have audio track 
data, hence we only make use of the video track data analysis part of our method to 
determine whether falling takes place. Image frames from the above video clips are 
shown in Figure 10. 

The classification results for the above test data with only video analysis and both 
audio and video analysis are presented in Table 2. There is no way to distinguish a 
person intentionally sitting down on the floor from a falling person, if only video 
track data is used. When both modalities are utilized, they can be distinguished and 
we do not get any false positive alarms for the videos having a person sitting down as 
shown in Table 2. 

Table 2. Detection results for the test set 

No. of Clips in which  
Falling is Detected Video Content Include Audio No. of Clips 

Video Audio+Video 
Walking +  

Talking Yes 16 0 0 

Sitting down + 
Talking Yes 5 5 0 

Sitting down Yes 4 4 0 
Walking +  

Falling 
Yes 25 25 25 

Walking +  
Falling 

No 14 14 14 

5   Conclusion 
A method for automatic detection of a falling person in video is developed. Main 
contribution of this work is the use of both audio and video tracks to decide a fall in 
video. The audio information is essential to distinguish a falling person from a person 
simply sitting down or sitting on a floor. Three-state HMMs are used to classify 
events. Feature parameters of HMMs are extracted from temporal wavelet signals 
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describing the bounding box of moving objects. Since wavelet signals are zero-mean 
signals, it is easier to define states in HMMs and this leads to a robust method against 
variations in object sizes. 

 
Fig. 10. Image frames from falling, sitting, and walking and talking clips 

The method is computationally efficient and it can be implemented in real-time in 
a PC type computer. 

Similar HMM structures can be also used for automatic detection of accidents and 
stopped vehicles in highways which are all examples of instantaneous events occur-
ring in video. 
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Abstract. This paper investigates the appearance manifold of facial
expression: embedding image sequences of facial expression from the high
dimensional appearance feature space to a low dimensional manifold.
We explore Locality Preserving Projections (LPP) to learn expression
manifolds from two kinds of feature space: raw image data and Local
Binary Patterns (LBP). For manifolds of different subjects, we propose
a novel alignment algorithm to define a global coordinate space, and
align them on one generalized manifold. Extensive experiments on 96
subjects from the Cohn-Kanade database illustrate the effectiveness of
the alignment algorithm. The proposed generalized appearance manifold
provides a unified framework for automatic facial expression analysis.

1 Introduction

The ability to recognize affective states of a person is indispensable and very
important for successful interpersonal social interaction. Human-Computer In-
teraction (HCI) designs need to include the ability of affective computing, in or-
der to become more human-like, more effective, and more efficient [13]. Affective
arousal modulates all nonverbal communication cues such as facial expressions,
body postures and movements. Facial expression is perhaps the most natural
and efficient means for humans to communicate their emotions and intentions,
as communication is primarily carried out face to face. Therefore, automatic fa-
cial expression analysis has attracted much attention [5, 12, 20] in recent years.
Though much progress has been made [3, 4, 19], recognizing facial expression
with a high accuracy remains to be difficult due to the complexity and variety
of facial expressions.

A face image with N pixels can be considered as a point in the N -dimensional
image space, and the variations of face images can be represented as low dimen-
sional manifolds embedded in the high dimensional image space [6–8, 14, 17]. It
would be desired to analyze facial expressions in the low dimensional subspace
rather than the ambient space. However, research on the manifold of facial ex-
pression has been very limited as far as it goes. Chang et al. [2] made first
attempt to apply two types of embedding, Locally Linear Embedding (LLE)
[14] and Lipschitz embedding, to learn the structure of the expression manifold.
In [3], they further proposed a probabilistic video-based facial expression recog-
nition method on manifolds. A complete expression sequence becomes a path on
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the expression manifold, and the transition between basic expressions is repre-
sented as the evolution of the posterior probability of the six basic paths. Based
on a expression manifold obtained by Isomap embedding [17], they also proposed
an approach for facial expression tracking and recognition [9]. However, the ex-
isting research learned the expression manifold in the feature space described by
a set of facial landmarks such as 58 facial points [2, 3]; the appearance manifold
of facial expression is still unknown. Moreover, the existing research was con-
ducted on data sets containing only several subjects [2, 3]; there is no published
work on the expression manifold carried out on a large number of subjects.

A number of nonlinear techniques have been proposed to learn the struc-
ture of a manifold, e.g., Isomap [17], LLE [14], and Laplacian Eigenmap (LE)
[1]. However, these techniques yield maps that are defined only on the training
data, and it is unclear how to evaluate the maps for new test data, although some
mapping methods were discussed in [14]. Therefore, they may not be suitable
for expression recognition tasks. Recently He and Niyogi [7] proposed a general
manifold learning method called Locality Preserving Projections (LPP) (Sec-
tion 2), which are obtained by finding the optimal linear approximations to the
eigenfunctions of the Laplace Beltrami operator on the manifold. Different from
PCA, which implicitly assumes that the data space is Euclidean, LPP assumes
that the data space is a linear or nonlinear manifold. LPP shares some similar
properties with LLE and LE, such as locality preserving. More crucially, LPP is
defined everywhere in the ambient space rather than just on the training data,
and so it has significant advantage over LLE and LE in locating and explain-
ing new test data in the reduced subspace. LPP was shown to have superior
discriminating power than PCA and LDA in face recognition [8].

In this paper, we investigate the appearance manifold of facial expression,
which provides a unified framework for automatic facial expression analysis. We
explore Locality Preserving Projections to learn the structure of the expression
manifold from two kinds of feature space: raw image data and Local Binary
Patterns (LBP) [16]. For manifolds of different subjects, we propose a novel
alignment method to keep the semantic similarity of facial expression from dif-
ferent subjects on one generalized manifold (Section 3). We show in Section 4 the
experimental results on the Cohn-Kanade Database [10]. Expression manifolds
of 96 subjects are successfully aligned on the generalized manifold. Expression
recognition performed on the generalized manifolds further demonstrate the ef-
fectiveness of the alignment method. Conclusions are drawn in Section 5.

2 Locality Preserving Projections (LPP)

The generic problem of linear dimensionality reduction is the following. Given
a set x1, x2, . . . , xm in Rn, find a transformation matrix W that maps these m
points to y1, y2, . . . , ym in Rl(l � n), such that yi represent xi, where yi = WT xi.
Let w denote the transformation vector, the optimal projections preserving lo-
cality can be obtained by solving the following minimization problem [7]:

min
w

∑
i,j

(wT xi − wT xj)2Sij (1)
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where Sij evaluate the local structure of data space. It can be defined as follows:

Sij =

{
e−

‖xi−xj‖2

t if xi and xi are “close”
0 otherwise

(2)

or in a simpler form as

Sij =
{

1 if xi and xi are “close”
0 otherwise (3)

where “close” can be defined by ‖xi−xj‖2 < ε, or xi is among k nearest neighbors
of xj or xj is among k nearest neighbors of xi. The objective function with the
choice of symmetric weights Sij(Sij = Sji) incurs a heavy penalty if neighboring
points xi and xj are mapped far apart. Therefore, minimizing it is an attempt to
ensure that if xi and xj are “close” then yi(= wT xi) and yj(= wT xj) are close
as well. Sij can be seen as a similarity measure between objects. The objective
function can be reduced to:

1
2

∑
ij

(wT xi − wT xj)2Sij =
∑

i

wT xiDiix
T
i w −

∑
ij

wT xiSijx
T
j w

= wT X(D − S)XTw = wT XLXTw (4)

where X = [x1, x2, . . . , xm] and D is a diagonal matrix whose entries are column
(or row, since S is symmetric) sums of S, Dii =

∑
j Sji. L = D − S is the

Laplacian matrix. The bigger the value Dii (corresponding to yi) is, the more
important is yi. Therefore, a constraint is imposed as follows:

yT Dy = 1 ⇒ wT XDXTw = 1 (5)

The transformation vector w that minimizes the objective function is given by
the minimum eigenvalue solution to the generalized eigenvalue problem:

XLXTw = λXDXTw (6)

Note that the two matrices XLXT and XDXT are both symmetric and positive
semi-definite. The obtained projections are actually the optimal linear approxi-
mation to the eigenfunctions of the Laplace Beltrami operator on the manifold
[7]. Therefore, though it is still a linear technique, LPP recovers important as-
pects of the intrinsic nonlinear manifold structure by preserving local structure.
A more detailed derivation and justifications of LPP can be found in [7].

By applying LPP to LBP appearance feature space, image sequences of facial
expressions of an individual are mapped into the embedded space as shown in
Fig 1. The embedded manifolds of another three subjects are shown in Fig 2. It
is observed that image sequences representing basic expressions with increasing
intensity become curves on the manifold extended from the center (neutral faces)
to the typical expressions.
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Fig. 1. Six image sequences of basic expressions of an individual mapped into the
embedding space described by the first 3 coordinates of LPP. Different sequences are
represented by different colors: red: Anger; yellow: Disgust; blue: Fear; magenta: Joy;
cyan: Sadness; green: Surprise. (Note: the meaning of colors keeps same in all figures)

3 Alignment of Manifolds of Different Subjects

Image sequences of facial expressions of an individual makes a continuous man-
ifold in the embedding space; however, due to significant appearance variation
across different subjects, the manifolds of different subjects vary much in the cov-
ered regions and the stretching directions. Fig 3 shows the embedded manifold
of image sequences from six subjects, which clearly shows that different subjects
correspond to different clusters. Manifolds of different subjects should be aligned
in a way that the images from different subjects with semantic similarity can be
mapped to the near region. Chang et al [2] proposed a nonlinear method to align
the manifolds of different subjects in the space of Lipschitz embedding. Their
alignment method was evaluated on image sequences from two subjects. Here
we propose a novel algorithm to align manifolds of different subjects in a global
space, and verify its effectiveness on O(102) subjects.

As shown in Fig 1, an image sequence representing facial expression with in-
creasing intensity is embedded as a curve on the manifold, from the neutral face
to the typical expression. If we define a global coordinate space, in which differ-
ent typical expressions (including neutral faces and six basic expressions) from
multiple subjects are well clustered and separated, the image sequences from
different subjects with the same expression will be embedded as curves between
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the same two clusters: neutral faces and the typical expression. In this way, the
manifolds of different subjects will be aligned on one generalized manifold.

We propose to define the global coordinate space based on images of typi-
cal expressions. For the data set containing images of typical expressions from
different subjects, as appearance varies a lot cross different subjects, there is sig-
nificant overlapping among different expression classes. Therefore, the original
LPP, which performs in an unsupervised manner, fails to embed the data set
in low dimensional space in which different expression classes are well clustered.
Here we proposed a Supervised Locality Preserving Projections (SLPP) algo-
rithm to solve the problem, which not only preserves local structure, but also
encodes class information in the embedding. SLPP preserves class information
when constructing the neighborhood graph. The local neighborhood of a sample
xi from class c should be composed of samples belonging to class c only. This
can be achieved by increasing the distances between samples belonging to dif-
ferent classes, but leaving them unchanged if they are from the same class. Let
Dis(i, j) denote the distance between xi and xj , the distance after incorporating
class information is defined as

SupDis(i, j) = Dis(i, j) + αMδ(i, j) α ∈ [0, 1] (7)

where M = maxi,j Dis(i, j), and δ(i, j) = 1 if xi and xj belong to the same
class, and 0 otherwise. SLPP introduces an additional parameter α to quantify
the degree of supervised learning. When α = 0, one obtains the unsupervised
LPP; when α = 1, the result is fully supervised LPP. For fully supervised LPP,
distances between samples in different classes will be larger than the maximum
distance in the entire data set; this means neighbors of a sample will always be
picked from that class it belongs to. Varying α between 0 and 1 gives a partially
supervised LPP, where a embedding is found by introducing some separation
between classes. SLPP (α = 1) is used in this paper. By preserving local structure
of data belonging to the same class, SLPP obtains a subspace in which different
image classes can be well separated.

By applying SLPP to the data set of images of typical expressions, a subspace
is derived, in which different expression classes are well clustered and separated
(as shown in Fig 5). The subspace provides global coordinates for the manifolds
of different subjects, which are aligned on one generalized manifold. Image se-
quences representing facial expressions from beginning to apex are mapped on
the generalized manifold as the curves from the neutral faces to the cluster of the
typical expressions. For comparison, Fig 3 and Fig 6 show the unaligned man-
ifolds and the aligned manifolds of six subjects. The generalized manifold map
the images with sematic similarity but from different subjects in the near region;
so it provides a unified framework for automatic facial expression analysis.

4 Experiments

The optimal data set for expression manifold learning should contain O(102)
subjects, and each subject has O(103) images that cover basic expressions. How-
ever, until now, there is no such database that can meet this requirement. Chang
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et al [2, 3] conducted experiments on a small data set builded themselves, e.g.,
only two subjects (one male and one female) were used in [2]. Here we conduct
experiments on the Cohn-Kanade database [10] which consists of 100 university
students in age from 18 to 30 years, though each subject only has several tens
frames of basic expressions. Image sequences from neutral to target expression
were captured, and the duration of the expression varied. In our experiments, 316
image sequences (5,876 images in total) of basic expressions were selected from
the database, which come from 96 subjects, with 1 to 6 emotions per subject.

Following Tian [18], we normalized the faces to a fixed distance between
the centers of the two eyes. Facial images of 110×150 pixels were cropped from
original frames based on the two eyes location. No further alignment of facial
features such as alignment of mouth, or remove of illumination changes [18]
were performed in our experiments. So variations due to illumination, and pose
exist in our data. In [2], Active Wavelets Networks were applied on the image
sequences to reduce these variations.

Two kinds of appearance features were used: raw image data (IMG) and
Local Binary Patterns (LBP). LBP was proposed originally for texture analysis
[11]. Face images can be seen as a composition of micro-patterns which can be
effectively described by the LBP features. In our previous research [15, 16], LBP
features were shown to be effective and efficient for facial expression analysis.
Each face image was represented by a LBP histogram with length of 2, 478 (see
[16] for details). When considering IMG features, for computational efficiency,
we down-sampled face images to 55×75 pixels, and represented each image with
a 4, 125-dimensional vector.

Appearance Manifold of Facial Expression. We selected six subjects from
the data set, each of which has six image sequences corresponding to six basic
expressions. At first, we applied LPP to image sequences of each subject respec-
tively to learn the expression manifold of each subject. 3-D visualization of the
embedded manifold in LBP feature space of one subject is shown in Fig 1. Due
to limitation of space, we only show the embedded manifolds of another three
subjects in Fig 2. It is observed that images of facial expressions of an individ-
ual were embedded as a smooth manifold, and every image sequence is mapped
to a curve on the manifold that begins from the neutral face and extends in
distinctive direction with varying intensity of expression.

Next we applied LPP to image sequences of all six subjects, and 3-D visual-
ization of the embedded manifold are shown in Fig 3. It is observed that there
are six clusters in the embedded space, and image sequences of different subjects
are mapped to different regions. As said above, due to the significant appearance
variation across subjects, it is very hard for LPP to keep images with similar
expression but from different subjects in the near region on the manifold. Fig
4 shows the 3-D embedded manifolds of all image sequences from 96 subjects,
which consists of many manifolds with different centers (neutral faces), covering
regions and stretching directions.

Alignment of Appearance Manifolds. We selected one neutral face and
three peak frames (during the apex of expression) of every sequence to build a
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Fig. 2. 3-D visualization of expression manifolds of three subjects (from left to right).
The first row: LBP; the second row: IMG

Fig. 3. Image sequences of six subjects mapped into the embedding space described
by the first three coordinates of LPP. Left: LBP; Right: IMG

Fig. 4. Image sequences of 96 subjects mapped into the embedding space described by
the first three coordinates of LPP. Left: LBP; Right: IMG

data set that consists of images of 7-class basic expressions. The Supervised LPP
was explored to embed the data set to a subspace as shown in Fig 5. Different
expressions were well clustered and separated in the subspace. It is also observed
that different expression classes are better separated with LBP features. The



228 Caifeng Shan, Shaogang Gong, and Peter W. McOwan

Fig. 5. Images of typical facial expressions mapped into the embedding space described
by the first three coordinates of SLPP. Left: LBP; Right: IMG

distributions obtained reflect the human observation that Joy and Surprise can
be clearly separated, but Anger, Disgust, Fear and Sadness are easily confused.
In many existing research such as [4, 18], most confusions also come from Anger,
Disgust, Fear and Sadness.

The subspace derived by SLPP provides global coordinates for the manifolds
of different subjects. Fig 6 plots appearance manifolds of the six subjects in the
global space, which are successfully aligned on one generalized manifold. The
manifolds of 96 subjects are also aligned on the generalized manifold as shown
in Fig 7. We can conclude that the images with semantic similarity but from dif-
ferent subjects are successfully embedded in the near region in the global space.
A supplementary video1 demonstrates image sequences of different subjects are
embedded on the generalized manifold.

Fig. 6. The aligned manifolds of the six subjects. Left: LBP; Right: IMG

The global space is learned from images of typical basic expressions. So it is
simple and easy to implement. Although only image sequences of basic expres-
sions are discussed until now, the generalized appearance manifold provides a
global semantic representation for all possible facial expressions. For example,
the blends of expression will lie between the curves of basic expressions, so can
1 Available at http://www.dcs.qmul.ac.uk/˜cfshan/demos/manifold align.avi
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Fig. 7. The aligned manifolds of 96 subjects. Left: LBP; Right: IMG

be analytically analyzed based on the basic curves. Intensity of expression can
also be defined easily on the generalized manifold. Therefore, the analysis of
facial expression will be facilitated on the generalized manifold.

Facial Expression Recognition. Following Chang et al [2], we applied a k-
Nearest Neighbor method to classify expressions on the aligned expression man-
ifold. Since there is no clear boundary between neutral face and the expression
of a sequence, we manually labelled neutral faces, which introduced noise in our
recognition. The recognition results are presented in Table 1. The experimental
results further demonstrate the effectiveness of our alignment method.

Table 1. Expression recognition results on the generalized appearance manifold of
facial expression

k-NN (k = 9) k-NN (k = 11) k-NN (k = 13)

IMG 92.04% 91.27% 89.98%

LBP 90.71% 90.79% 90.67%

5 Conclusions

This paper investigates the appearance manifold of facial expression, which pro-
vide a general framework for automatic facial expression analysis. Locality Pre-
serving Projections (LPP) is explored to learn expression manifolds from two
kinds of feature space: raw image data and Local Binary Patterns (LBP). For
manifolds of different subjects, we propose a novel alignment algorithm by learn-
ing a global space from images of typical expressions. The semantic similarity of
facial expression from different subject is well kept on the generalized manifold.
Extensive experiments on 96 subjects from the Cohn-Kanade database illustrate
the effectiveness of the alignment algorithm.
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